Cho tam giác ABC có A(−2; 3), B(1; −2), C(−5; 4). Gọi M là trung điểm của BC


Câu hỏi:

Cho tam giác ABC có A(2; 3), B(1; 2), C(5; 4). Gọi M là trung điểm của BC. Phương trình tham số của đường trung tuyến AM của ∆ABC là:

A. x=2y=32t

B. x=24ty=32t

C. x=2ty=2+3t

D. x=2y=32t

Trả lời:

Hướng dẫn giải

Đáp án đúng là: D

Vì M là trung điểm của đoạn thẳng BC nên ta có:

xM=xB+xC2yM=yB+yC2  xM=1+(5)2=2yM=(2)+42=1 M(−2;1)

Suy ra AM=(0;2)

Vậy phương trình tham số của đường trung tuyến AM đi qua điểm A và nhận vectơ AM làm vectơ chỉ phương là: x=2y=32t.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Khoảng cách từ giao điểm của hai đường thẳng d1: x – 3y + 4 = 0 và d2 : 2x +3y - 1 = 0 đến đường thẳng ∆: 3x + y + 4 = 0 bằng

Xem lời giải »


Câu 2:

Góc tạo bởi hai đường thẳng d1: 2x – y – 10 = 0 và d2: x − 3y + 9 = 0

Xem lời giải »


Câu 3:

Phương trình đường tròn tâm I(– 2; 1) và tiếp xúc đường thẳng ∆: x – 2y + 7 = 0 là:

Xem lời giải »


Câu 4:

Cho tam giác ABC có A(2; -1); B(2; -2) và C(0; -1). Độ dài đường cao kẻ từ A của tam giác ABC:

Xem lời giải »


Câu 5:

Cho đường tròn (C) có đường kính AB với A(−2; 1), B(4; 1). Khi đó, phương trình đường tròn (C):

Xem lời giải »


Câu 6:

Cho 4 điểm A(4; – 3) ; B(5; 1), C(2; 3) và D(– 2; 2). Xác định vị trí tương đối của hai đường thẳng AB và CD:

Xem lời giải »


Câu 7:

Tìm toạ độ giao điểm của hai đường thẳng 7x – 3y + 16 = 0 và x + 10 = 0

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2