Phương trình đường tròn tâm I(– 2; 1) và tiếp xúc đường thẳng ∆: x – 2y + 7 = 0 là:


Câu hỏi:

Phương trình đường tròn tâm I(– 2; 1) và tiếp xúc đường thẳng ∆: x – 2y + 7 = 0 là:

A. (x + 1)2 + (y – 2)2 = 25;               

B. (x – 1)2 + (y + 2)2 = 25;           

C. (x – 1)2 + (y + 2)2 = 45;             

D. (x + 1)2 + (y – 2)2 = 45.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: D

Bán kính đường tròn (C) là khoảng cách từ I đến đường thẳng ∆ nên

R = d(I; ∆) = 1471+4=25

Vậy phương trình đường tròn (C) là: (x + 1)2 + (y – 2)2 = 45.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Khoảng cách từ giao điểm của hai đường thẳng d1: x – 3y + 4 = 0 và d2 : 2x +3y - 1 = 0 đến đường thẳng ∆: 3x + y + 4 = 0 bằng

Xem lời giải »


Câu 2:

Góc tạo bởi hai đường thẳng d1: 2x – y – 10 = 0 và d2: x − 3y + 9 = 0

Xem lời giải »


Câu 3:

Cho tam giác ABC có A(2; 3), B(1; 2), C(5; 4). Gọi M là trung điểm của BC. Phương trình tham số của đường trung tuyến AM của ∆ABC là:

Xem lời giải »


Câu 4:

Cho tam giác ABC có A(2; -1); B(2; -2) và C(0; -1). Độ dài đường cao kẻ từ A của tam giác ABC:

Xem lời giải »


Câu 5:

Cho đường tròn (C) có đường kính AB với A(−2; 1), B(4; 1). Khi đó, phương trình đường tròn (C):

Xem lời giải »


Câu 6:

Cho 4 điểm A(4; – 3) ; B(5; 1), C(2; 3) và D(– 2; 2). Xác định vị trí tương đối của hai đường thẳng AB và CD:

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2