Cho tam giác ABC có A(−2; 3), B(1; −2), C(−5; 4). Gọi M là trung điểm của BC.


Câu hỏi:

Cho tam giác ABC có A(2; 3), B(1; 2), C(5; 4). Gọi M là trung điểm của BC. Phương trình tham số của đường trung tuyến AM của ∆ABC là:

A. x=2y=32t

B. x=24ty=32t

C. x=2ty=2+3t

D. x=2y=32t

Trả lời:

Hướng dẫn giải

Đáp án đúng là: D

Vì M là trung điểm của đoạn thẳng BC nên ta có:

xM=xB+xC2yM=yB+yC2xM=1+(5)2=2yM=(2)+42=1 M(−2;1)

Suy ra AM=(0;2)

Vậy phương trình tham số của đường trung tuyến AM đi qua điểm A và nhận vectơ AM làm vectơ chỉ phương là:

x=2y=32t.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Viết phương trình tham số của đường thẳng đi qua hai điểm A(1; 3) và B(3; 1)

Xem lời giải »


Câu 2:

Cho đường thẳng d có phương trình tham số là: x=3+ty=42t. Khi đó phương trình tổng quát của đường thẳng d là:

Xem lời giải »


Câu 3:

Cho đường thẳng ∆ có phương trình 3x – 4y + 2 = 0. Điểm nào sau đây không nằm trên đường thẳng ∆?

Xem lời giải »


Câu 4:

Phương trình đường thẳng d đi qua điểm M(−2; 3) và song song với đường thẳng EF với E(0; −1), F(−3; 0) là:

Xem lời giải »


Câu 5:

Cho tam giác ABC có A(2; 1); B(4; 5) và C(−3; 2). Phương trình đường cao kẻ từ C của tam giác ABC là:

Xem lời giải »


Câu 6:

Cho hai điểm A(1; −4) và B(5; 2), đường trung trực của đoạn thẳng AB có phương trình là:

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2