Cho tam giác ABC với A(-1;2), B(8;-1), C(8;8). Tính bán kính đường


Câu hỏi:

Cho tam giác ABC với A(-1;2), B(8;-1), C(8;8). Tính bán kính đường tròn ngoại tiếp tam giác ABC.

A. 11,4;

B. 6,7;

C. 5,7;

D. 9.

Trả lời:

Đáp án đúng là C

Ta có:

\(\overrightarrow {AB} = \left( {9; - 3} \right) \Rightarrow AB = \sqrt {{9^2} + {{\left( { - 3} \right)}^2}} = 3\sqrt {10} .\)

\(\overrightarrow {AC} \left( {9;6} \right) \Rightarrow AC = \sqrt {{9^2} + {6^2}} = 3\sqrt {13} .\)

\(\overrightarrow {BC} \left( {0;9} \right) \Rightarrow BC = \sqrt {{0^2} + {9^2}} = 9.\)

Ta lại có:

\(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.cos\widehat {BAC}\)

\( \Leftrightarrow 9.9 + \left( { - 3} \right).6 = 3\sqrt {10} .3\sqrt {13} .cos\widehat {BAC}\)

\( \Leftrightarrow 63 = 9\sqrt {130} .cos\widehat {BAC}\)

\( \Leftrightarrow cos\widehat {BAC} = \frac{7}{{\sqrt {130} }} \Leftrightarrow \widehat {BAC} \approx 52,13^\circ .\)

Áp dụng định lí Sin trong tam giác ta được:

\(\frac{{BC}}{{\sin \widehat {BAC}}} = 2R \Leftrightarrow \frac{9}{{\sin 52,13^\circ }} = 2R \Leftrightarrow R \approx 5,7\).

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ, cặp vectơ nào sau đây vuông góc với nhau?

Xem lời giải »


Câu 2:

Góc giữa vectơ \(\overrightarrow a \left( { - 1; - 1} \right)\) và vecto \(\overrightarrow b \left( { - 1;0} \right)\) có số đo bằng:

Xem lời giải »


Câu 3:

Cho hình vuông ABCD có độ dài cạnh là a và A(0; 0), B(a; 0), C(a; a), D(0; a). Khẳng định nào sau đây là đúng?

Xem lời giải »


Câu 4:

Khi nào thì hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) vuông góc?

Xem lời giải »


Câu 5:

Tìm điều kiện của \(\overrightarrow u ,\overrightarrow v \) để \(\overrightarrow u .\overrightarrow v = - \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.\)

Xem lời giải »


Câu 6:

Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; -3), B(5; 2). Tìm điểm M thuộc tia Oy để góc \(\widehat {AMB} = {90^0}.\)

Xem lời giải »


Câu 7:

Cho tam giác ABC có trọng tâm G. Với điểm M bất kì, đẳng thức nào sau đây đúng?

Xem lời giải »


Câu 8:

Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(-3;1), B(2;4), C(2;-2). Gọi H(x; y) là trực tâm của tam giác ABC. Tính S = 5x + y.

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2