Có bao nhiêu cách xếp 5 người thành một hàng dọc


Câu hỏi:

Có bao nhiêu cách xếp 5 người thành một hàng dọc

A. 120;

B. 5;

C. 20;

D. 25.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: A

Mỗi cách xếp 5 người thành một hàng dọc là một hoán vị của 5 người đó. Vậy số cách xếp 5 người thành một hàng dọc là: 5! = 120.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Cho các số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau

Xem lời giải »


Câu 2:

Cho các số 1; 2; 3; 4; 5; 6; 7; 8 có thể lập được bao nhiêu số tự nhiên lẻ gồm 5 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.

Xem lời giải »


Câu 3:

Có 10 quả cầu đỏ được đánh số từ 1 đến 10, 7 quả cầu xanh được đánh số từ 1 đến 7 và 8 quả cầu vàng được đánh số từ 1 đến 8. Hỏi có bao nhiêu cách lấy ra 3 quả cầu khác màu và khác số.

Xem lời giải »


Câu 4:

Với n là số tự nhiên thỏa mãn Cn4n6+nAn2=454, hệ số của số hạng chứa x4 trong khai triển nhị thức 2xx3n( với x ≠ 0) bằng

Xem lời giải »


Câu 5:

Có bao nhiêu số tự nhiên gồm 5 chữ số chia hết cho 10

Xem lời giải »


Câu 6:

Tên 15 học sinh được ghi vào 15 tờ giấy để vào trong hộp. Có bao nhiêu cách chọn tên 4 học sinh để cho đi du lịch

Xem lời giải »


Câu 7:

Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài sao cho sách Văn phải xếp kề nhau và sách Toán xếp kề nhau?

Xem lời giải »


Câu 8:

Khai triển nhị thức (2x + y)5 ta được kết quả là:

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2