Một nhóm có 6 học sinh gồm 4 nam và 2 nữ. Hỏi có bao nhiêu cách chọn ra 3 học sinh


Câu hỏi:

Một nhóm có 6 học sinh gồm 4 nam và 2 nữ. Hỏi có bao nhiêu cách chọn ra 3 học sinh trong đó có cả nam và nữ.

A. 32;

B. 20;

C. 6;

D. 16.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: D

Vì chọn ra 3 học sinh có cả nam và nữ nên xảy ra các trường hợp sau:

Trường hợp , chọn  nam và 2 nữ

Công đoạn 1, chọn 1 nam trong 4 nam có 4 cách chọn;

Công đoạn 2, chọn 2 nữ trong 2 nữ có C22 = 1 cách chọn;

Áp dụng quy tắc nhân trường hợp 1 có 4.1 = 4 cách chọn.

Trường hợp 2, chọn 2 nam và nữ có:

Công đoạn 1, chọn 2 nam trong 4 nam có  C42 = 6 cách chọn;

Công đoạn 2, chọn 1 nữ trong 2 nữ có 2 cách chọn;

Áp dụng quy tắc nhân trường hợp 2 có 6.2 = 12 cách chọn.

Áp dụng quy tắc cộng cả hai trường hợp có 4 + 12 = 16 (cách chọn).

Vậy có 16 cách chọn để 3 học sinh được chọn có cả nam và nữ.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Cho các số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau

Xem lời giải »


Câu 2:

Cho các số 1; 2; 3; 4; 5; 6; 7; 8 có thể lập được bao nhiêu số tự nhiên lẻ gồm 5 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.

Xem lời giải »


Câu 3:

Có 10 quả cầu đỏ được đánh số từ 1 đến 10, 7 quả cầu xanh được đánh số từ 1 đến 7 và 8 quả cầu vàng được đánh số từ 1 đến 8. Hỏi có bao nhiêu cách lấy ra 3 quả cầu khác màu và khác số.

Xem lời giải »


Câu 4:

Với n là số tự nhiên thỏa mãn Cn4n6+nAn2=454, hệ số của số hạng chứa x4 trong khai triển nhị thức 2xx3n( với x ≠ 0) bằng

Xem lời giải »


Câu 5:

Nếu 2An4=3An14 thì giá trị của n bằng

Xem lời giải »


Câu 6:

Giá trị của n thoả mãn An3=20n 

Xem lời giải »


Câu 7:

Trong các số nguyên từ 100 đến 999, số các số mà các chữ số của nó tăng dần hoặc giảm dần (kể từ trái qua phải) bằng:

Xem lời giải »


Câu 8:

Trong khai triển (x + 3)n+2 có 15 số hạng. Giá trị của n bằng

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2