Tập xác định của hàm số y = 1 / căn bậc hai (2 - 3x) + căn bậc hai (2x -1 ) là:
Câu hỏi:
Tập xác định của hàm số \(y = \frac{1}{{\sqrt {2 - 3x} }} + \sqrt {2x - 1} \) là:
A. \(\left[ {\frac{1}{2};\frac{2}{3}} \right)\);
B. \(\left[ {\frac{1}{2};\frac{3}{2}} \right)\);
C. \(\left( {\frac{2}{3}; + \infty } \right)\);
D. \(\left[ {\frac{1}{2}; + \infty } \right)\).
Trả lời:
Đáp án đúng là: A
Điều kiện xác định của hàm số là
\(\left\{ \begin{array}{l}2 - 3x > 0\\2x - 1 \ge 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x < \frac{2}{3}\\x \ge \frac{1}{2}\end{array} \right.\) \( \Leftrightarrow \frac{1}{2} \le x < \frac{2}{3}\)
Vậy tập xác định của hàm số là: D = \(\left[ {\frac{1}{2};\frac{2}{3}} \right)\).
Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:
Câu 1:
Tập xác định của hàm số \(y = \sqrt {{x^2} - 3x - 4} \) là:
Xem lời giải »
Câu 2:
Tìm tập xác định D của hàm số \[y = \frac{{3x - 1}}{{2x - 2}}\].
Xem lời giải »
Câu 3:
Cho hàm số f(x) = 4 – 3x. Khẳng định nào sau đây đúng?
Xem lời giải »
Câu 4:
Cho hàm số: \(y = \frac{{x - 1}}{{2{x^2} - 3x + 1}}\). Trong các điểm sau đây, điểm nào thuộc đồ thị hàm số:
Xem lời giải »
Câu 5:
Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 – 4x + 5 trên khoảng
(– ∞; 2) và trên khoảng (2; + ∞). Khẳng định nào sau đây đúng?
Xem lời giải »
Câu 6:
Xét sự biến thiên của hàm số \(f\left( x \right) = \frac{3}{x}\) trên khoảng (0; + ∞). Khẳng định nào sau đây đúng?
Xem lời giải »
Câu 7:
Tập xác định của hàm số \[y = \sqrt {{x^2} + x - 2} + \frac{1}{{\sqrt {x - 3} }}\] là
Xem lời giải »
Câu 8:
Tìm tập xác định D của hàm số \(y = \frac{{\sqrt {x + 2} }}{{x\sqrt {{x^2} - 4x + 4} }}\).
Xem lời giải »