Tọa độ tâm I và bán kính R của đường tròn (C): (x - 1)^2 + (y + 3)^2 = 16 là


Câu hỏi:

Tọa độ tâm I và bán kính R của đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 16\] là:

A. I (-1; 3), R = 4;

B. I (1; -3), R = 4;

C. I (1; -3), R = 16;

D. I (-1; 3), R = 16.

Trả lời:

Đáp án đúng là: B

Ta có: \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 16\]\[ \Rightarrow \]Tâm I (1; -3), bán kính R = \[\sqrt {16} \]= 4.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Gọi I(a; b) là tâm của đường tròn \[\left( C \right):{x^2} + {\left( {y + 4} \right)^2} = 5\]. Tính S = 2a + b:

Xem lời giải »


Câu 2:

Gọi I và R lần lượt là tâm và bán kính của đường tròn \[\left( C \right):{\left( {x + 1} \right)^2} + {y^2} = 8\]. Tìm I và tính S = 3.R.

Xem lời giải »


Câu 3:

Gọi I và R lần lượt là tâm và bán kính của đường tròn \[\left( C \right):{x^2} + {y^2} = 9\]. Tìm I và tính S = \[{R^3}\].

Xem lời giải »


Câu 4:

Đường tròn \[\left( C \right):{x^2} + {y^2} - 6x + 2y + 6 = 0\] có tâm I, bán kính R lần lượt là:

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2