Gọi I và R lần lượt là tâm và bán kính của đường tròn (C): (x + 1)^2 + y^2 = 8
Câu hỏi:
Gọi I và R lần lượt là tâm và bán kính của đường tròn \[\left( C \right):{\left( {x + 1} \right)^2} + {y^2} = 8\]. Tìm I và tính S = 3.R.
A. I (-1; 0), S = 8;
B. I (-1; 0), S = 64;
C. I (-1; 0), S = 6\[\sqrt 2 \];
D. I (1; 0), S = \[2\sqrt 2 \];
Trả lời:
Đáp án đúng là: C
Ta có: \[\left( C \right):{\left( {x + 1} \right)^2} + {y^2} = 8 \Rightarrow \] \[I\left( { - 1;0} \right),\,R = \sqrt 8 = 2\sqrt 2 \].
3.R = 6\[\sqrt 2 \].