Gọi I và R lần lượt là tâm và bán kính của đường tròn (C): (x + 1)^2 + y^2 = 8


Câu hỏi:

Gọi I và R lần lượt là tâm và bán kính của đường tròn \[\left( C \right):{\left( {x + 1} \right)^2} + {y^2} = 8\]. Tìm I và tính S = 3.R.

A. I (-1; 0), S = 8;

B. I (-1; 0), S = 64;

C. I (-1; 0), S = 6\[\sqrt 2 \];           

D. I (1; 0), S = \[2\sqrt 2 \];

Trả lời:

Đáp án đúng là: C

Ta có: \[\left( C \right):{\left( {x + 1} \right)^2} + {y^2} = 8 \Rightarrow \] \[I\left( { - 1;0} \right),\,R = \sqrt 8 = 2\sqrt 2 \].

3.R = 6\[\sqrt 2 \].

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Tọa độ tâm I và bán kính R của đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 16\] là:

Xem lời giải »


Câu 2:

Gọi I(a; b) là tâm của đường tròn \[\left( C \right):{x^2} + {\left( {y + 4} \right)^2} = 5\]. Tính S = 2a + b:

Xem lời giải »


Câu 3:

Gọi I và R lần lượt là tâm và bán kính của đường tròn \[\left( C \right):{x^2} + {y^2} = 9\]. Tìm I và tính S = \[{R^3}\].

Xem lời giải »


Câu 4:

Đường tròn \[\left( C \right):{x^2} + {y^2} - 6x + 2y + 6 = 0\] có tâm I, bán kính R lần lượt là:

Xem lời giải »


Câu 5:

Đường tròn có tâm trùng với gốc tọa độ, bán kính R = 1 có phương trình là:

Xem lời giải »


Câu 6:

Đường tròn có tâm I (1; 2), bán kính R = 3 có phương trình là:

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2