Gọi I và R lần lượt là tâm và bán kính của đường tròn (C): x^2 + y^2 = 9
Câu hỏi:
Gọi I và R lần lượt là tâm và bán kính của đường tròn \[\left( C \right):{x^2} + {y^2} = 9\]. Tìm I và tính S = \[{R^3}\].
A. I (0; 0), S = 9;
B. I (0; 0), S = 81;
C. I (1; 1), S = 3;
D. I (0; 0), S = 27;
Trả lời:
Đáp án đúng là: D
Ta có: \(\left( C \right):{x^2} + {y^2} = 9\)\( \Rightarrow I\left( {0;0} \right),\,\,R = \sqrt 9 = 3.\)
Suy ra S = \[{R^3}\]= 27.