Giải Toán 10 trang 44 Tập 2 Kết nối tri thức
Haylamdo biên soạn và sưu tầm với giải Toán 10 trang 44 Tập 2 trong Bài 21: Đường tròn trong mặt phẳng tọa độ Toán lớp 10 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10 trang 44.
Giải Toán 10 trang 44 Tập 2 Kết nối tri thức
Luyện tập 1 trang 44 Toán 10 Tập 2: Tìm tâm và bán kính của đường tròn (C): (x + 2)2 + (y – 4)2 = 7.
Lời giải:
Ta viết phương trình (C) ở dạng (x – (– 2))2 + (y – 4)2 = .
Vậy (C) có tâm I(– 2; 4) và bán kính R = .
Luyện tập 2 trang 44 Toán 10 Tập 2: Hãy cho biết phương trình nào dưới đây là phương trình của một đường tròn. Tìm tâm và bán kính của đường tròn đó.
a) x2 – y2 – 2x + 4y – 1 = 0;
b) x2 + y2 – 2x + 4y + 6 = 0;
c) x2 + y2 + 6x – 4y + 2 = 0.
Lời giải:
a) Phương trình x2 – y2 – 2x + 4y – 1 = 0 không có dạng x2 + y2 – 2ax – 2by + c = 0 nên đây không phải là phương trình đường tròn.
b) Ta có: x2 + y2 – 2x + 4y + 6 = 0
⇔ x2 + y2 – 2 . 1 . x – 2 . (– 2) . y + 6 = 0.
Có các hệ số a = 1, b = – 2, c = 6.
Ta có: a2 + b2 – c = 12 + (– 2)2 – 6 = – 1 < 0.
Vậy phương trình b) không phải là phương trình đường tròn.
c) x2 + y2 + 6x – 4y + 2 = 0
⇔ x2 + y2 – 2 . (– 3) . x – 2 . 2 y + 2 = 0.
Có các hệ số a = – 3, b = 2, c = 2.
Ta có: a2 + b2 – c = (– 3)2 + 22 – 2 = 11 > 0.
Do đó phương trình c) là phương trình đường tròn có tâm I(– 3; 2) và bán kính R = .
Lời giải bài tập Toán lớp 10 Bài 21: Đường tròn trong mặt phẳng tọa độ Kết nối tri thức hay khác: