Bài 3 trang 104 Toán 11 Tập 1 Cánh diều


Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABD, điểm I nằm trên cạnh BC sao cho BI = 2IC. Chứng minh rằng IG song song với mặt phẳng (ACD).

Giải Toán 11 Bài 3: Đường thẳng và mặt phẳng song song - Cánh diều

Bài 3 trang 104 Toán 11 Tập 1: Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABD, điểm I nằm trên cạnh BC sao cho BI = 2IC. Chứng minh rằng IG song song với mặt phẳng (ACD).

Lời giải:

Bài 3 trang 104 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Gọi M là trung điểm của AD.

• Xét ABD có G là trọng tâm tam giác nên BGGM=21 .

Theo bài, BI = 2IC nên BIIC=21

• Trong mặt phẳng (BCM):

Xét BCM có: BIIC=BGGM=21 , suy ra IG // CM (định lí Thalès đảo)

• Ta có: IG // CM; CM ⊂ (ACD)

Do đó IG // (ACD).

Lời giải bài tập Toán 11 Bài 3: Đường thẳng và mặt phẳng song song hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác: