Bài 5 trang 104 Toán 11 Tập 1 Cánh diều


Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi M, N lần lượt là trọng tâm của hai tam giác ABF và ABC. Chứng minh rằng đường thẳng MN song song với mặt phẳng (ACF).

Giải Toán 11 Bài 3: Đường thẳng và mặt phẳng song song - Cánh diều

Bài 5 trang 104 Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi M, N lần lượt là trọng tâm của hai tam giác ABF và ABC. Chứng minh rằng đường thẳng MN song song với mặt phẳng (ACF).

Lời giải:

Bài 5 trang 104 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Gọi I là trung điểm của AB.

Xét DABF có M là trọng tâm của tam giác nên FMMI=21 ;

Xét DABC có N là trọng tâm của tam giác nên NCNI=21 ;

Trong mặt phẳng ACF, xét ACF có FMMI=NCNI=21

Suy ra MN // FC (theo định lí Thalès)

Mà FC ⊂ (ACF).

Do đó MN // (ACF).

Lời giải bài tập Toán 11 Bài 3: Đường thẳng và mặt phẳng song song hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác: