Bài 6 trang 104 Toán 11 Tập 1 Cánh diều
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy điểm M trên cạnh AD sao cho AD = 3AM. Gọi G, N lần lượt là trọng tâm của tam giác SAB, ABC.
Giải Toán 11 Bài 3: Đường thẳng và mặt phẳng song song - Cánh diều
Bài 6 trang 104 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy điểm M trên cạnh AD sao cho AD = 3AM. Gọi G, N lần lượt là trọng tâm của tam giác SAB, ABC.
a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD).
b) Chứng minh rằng MN song song với mặt phẳng (SCD) và NG song song với mặt phẳng (SAC).
Lời giải:
a) Ta có: S ∈ (SAB) và S ∈ (SCD) nên S là giao điểm của (SAB) và (SCD).
Lại có: AB // CD (do ABCD là hình bình hành);
AB ⊂ (SAB);
CD ⊂ (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng d đi qua S và song song với AB, CD.
b) • Gọi O là tâm của hình bình hành, khi đó BO = OD = BD.
Xét DABC có N là trọng tâm của tam giác nên do đó .
Theo bài, AD = 3AM nên
Trong mặt phẳng (ABCD), xét ABD có
Do đó MN // AB (theo định lí Thalès đảo)
Trong mặt phẳng (ABCD) có: AB // CD và MN // AB nên MN // CD.
Lại có CD ⊂ (SCD)
Do đó MN // (SCD).
• Gọi I là trung điểm của SA.
Xét SAB có G là trọng tâm của tam giác nên
Trong (BIO), xét DBIO có:
Suy ra GN // IO (theo định lí Thalès đảo)
Mà IO ⊂ (SAC) nên GN // (SAC).
Lời giải bài tập Toán 11 Bài 3: Đường thẳng và mặt phẳng song song hay, chi tiết khác: