Bài 9 trang 58 Toán 11 Tập 1 Cánh diều
Cho cấp số cộng (u). Tìm số hạng đầu u, công sai d trong mỗi trường hợp sau:
Giải Toán 11 Bài tập cuối chương 2 - Cánh diều
Bài 9 trang 58 Toán 11 Tập 1: Cho cấp số cộng (un). Tìm số hạng đầu u1, công sai d trong mỗi trường hợp sau:
a) u2 + u5 = 42 và u4 + u9 = 66;
b) u2 + u4 = 22 và u1.u5 = 21.
Lời giải:
a) Ta có: u2 + u5 = u1 + d + u1 + 3d = 42
⇔ 2u1 + 4d = 42
Ta lại có: u4 + u9 = u1 + 3d + u1 + 8d = 2u1 + 11d = 66
Khi đó ta có hệ phương trình:
Vậy số hạng đầu của cấp số cộng là: và công sai d=.
b) Ta có: u2 + u4 = u1 + d + u1 + 3d = 22
⇔ 2u1 + 4d = 22
⇔ u1 + 2d = 11
⇔ u1 = 11 – 2d
Ta lại có: u1.u5 = u1(u1 + 4d) = 21.
Thay u1 = 11 – 2d vào biểu thức trên ra được:
(11 – 2d)(11 – 2d + 4d) = 21
⇔ (11 – 2d)(11 + 2d) = 21
⇔ 121 – 4d2 = 21
⇔ d = 5 hoặc d = – 5.
Với d = 5 thì u1 = 1.
Với d = – 5 thì u1 = 21.
Lời giải bài tập Toán 11 Bài tập cuối chương 2 hay, chi tiết khác:
Bài 2 trang 57 Toán 11 Tập 1: Trong các dãy số sau, dãy số nào là cấp số cộng? ....
Bài 3 trang 57 Toán 11 Tập 1: Cho cấp số cộng (un) có số hạng đầu u1 = – 5, công sai d = 4 ....
Bài 4 trang 57 Toán 11 Tập 1: Tổng 100 số tự nhiên lẻ đầu tiên tính từ 1 là ....
Bài 6 trang 57 Toán 11 Tập 1: Cho cấp số nhân (un) có un = – 1, công bội q=- ....
Bài 7 trang 57 Toán 11 Tập 1: Trong các dãy số (un) sau đây, dãy số nào là dãy số tăng? ....