Giải Toán 11 trang 62 Tập 2 Cánh diều
Haylamdo biên soạn và sưu tầm lời giải Toán 11 trang 62 Tập 2 trong Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm Toán 11 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 62.
Giải Toán 11 trang 62 Tập 2 Cánh diều
Luyện tập 2 trang 62 Toán 11 Tập 2: Tính đạo hàm của hàm số f(x) = x3 tại điểm x bất kì bằng định nghĩa.
Lời giải:
⦁ Xét ∆x là số gia của biến số tại điểm x.
Ta có ∆y = f(x + ∆x) – f(x) = (x + ∆x)3 – x3
= x3 + 3x2∆x + 3x(∆x)2 + (∆x)3 – x3
= 3x2∆x + 3x(∆x)2 + (∆x)3
= ∆x[3x2 + 3x∆x + (∆x)2]
Suy ra
⦁ Ta thấy
Vậy f’(x) = 3x2.
Hoạt động 2 trang 62 Toán 11 Tập 2: Cho hàm số y = f(x) có đồ thị (C), một điểm M0 cố định thuộc (C) có hoành độ x0. Với mỗi điểm M thuộc (C) khác M0, kí hiệu xM là hoành độ của điểm M và kM là hệ số góc của cát tuyến M0M. Giả sử tồn tại giới hạn hữu hạn .
Khi đó, ta coi đường thẳng M0T đi qua M0 và có hệ số góc k0 là vị trí giới hạn của cát tuyến M0M khi điểm M di chuyển dọc theo (C) dần tới M0.
Đường thẳng M0T được gọi là tiếp tuyến của (C) tại điểm M0, còn M0 được gọi là tiếp điểm (Hình 3).
a) Xác định hệ số góc k0 của tiếp tuyến M0T theo x0.
b) Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm M0
Lời giải:
a)Từ M0(x0; y0) và M(xM; yM) ta có
Đường cát tuyến nhận làm vectơ chỉ phương nên có
Hệ số góc là:
Khi đó:
Vậy k0 = f’(x0).
b) Phương trình tiếp tuyến của đồ thị hàm số tại điểm M0(x0; y0) có hệ số góc k0 = f’(x0)là:
y = k0(x – x0) + y0 hay y = f’(x0)(x – x0) + f(x0).
Lời giải bài tập Toán 11 Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm hay khác: