a) Dùng định nghĩa, tính đạo hàm của hàm số y = x3 + x2 tại điểm x bất kì. b) So sánh: (x3 + x2)' và (x3)' + (x2)'.


Câu hỏi:

a) Dùng định nghĩa, tính đạo hàm của hàm số y = x3 + x2 tại điểm x bất kì.

b) So sánh: (x3 + x2)' và (x3)' + (x2)'.

Trả lời:

a)

Đặt f(x) = y = x3 + x2­.

Với x0 bất kì, ta có:

y'=f'(x0)=limxx0f(x)f(x0)xx0=limxx0x3+x2x03x02xx0

=limxx0x3x03+x2x02xx0=limxx0xx0x2+xx0+x02+x+x0xx0

=limxx0x2+xx0+x02+x+x0=3x02+2x0.

Vậy đạo hàm của hàm số y = x3 + x2 là hàm số y' = 3x2 + 2x.

b)

Ta có (x3)' = 3x2 ; (x2)' = 2x, do đó (x3)' + (x2)' = 3x2 + 2x.

Từ đó suy ra (x3 + x2)' = (x3)' + (x2)' (cùng bằng 3x2 + 2x).

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Một vật được phóng theo phương thẳng đứng lên trên từ mặt đất với vận tốc ban đầu v0 = 20 m/s. Trong Vật lí, ta biết rằng khi bỏ qua sức cản của không khí, độ cao h so với mặt đất (tính bằng mét) của vật tại thời điểm t (giây) sau khi ném được cho bởi công thức sau:

h=v0t12gt2,

trong đó, v0 là vận tốc ban đầu của vật, g = 9,8 m/s2 là gia tốc rơi tự do. Hãy tính vận tốc của vật khi nó đạt độ cao cực đại và khi nó chạm đất.

Xem lời giải »


Câu 2:

Nhận biết đạo hàm của hàm số y = xn.

a) Tính đạo hàm của hàm số y = x3 tại điểm x bất kì.

b) Dự đoán công thức đạo hàm của hàm số y = xn (n *).

Xem lời giải »


Câu 3:

Dùng định nghĩa, tính đạo hàm của hàm số y=x   tại điểm x > 0.

Xem lời giải »


Câu 4:

Tính đạo hàm của các hàm số sau:

a) y=xx+1 ;

Xem lời giải »


Câu 5:

Tính đạo hàm của các hàm số sau:

b) y=x+1x2+2 .

Xem lời giải »


Câu 6:

Nhận biết quy tắc đạo hàm của hàm số hợp

Cho các hàm số y = u2 và u = x2 + 1.

a) Viết công thức của hàm số hợp y = (u(x))2 theo biến x.

Xem lời giải »


Câu 7:

b) Tính và so sánh: y'(x) và y' (u) . u' (x).

Xem lời giải »