Giới hạn cơ bản của hàm số mũ và hàm số lôgarit a) Sử dụng phép đổi biến t = 1/x , tìm giới hạn lim x đến 0 ( 1+x)^1/x.


Câu hỏi:

Giới hạn cơ bản của hàm số mũ và hàm số lôgarit

a) Sử dụng phép đổi biến t = 1x, tìm giới hạn limx01+x1x .

Trả lời:

a)

Ta có: t = 1x  , nên khi x → 0 thì t → + ∞ do đó:

limx01+x1x=limt+1+1tt=e.

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Một vật được phóng theo phương thẳng đứng lên trên từ mặt đất với vận tốc ban đầu v0 = 20 m/s. Trong Vật lí, ta biết rằng khi bỏ qua sức cản của không khí, độ cao h so với mặt đất (tính bằng mét) của vật tại thời điểm t (giây) sau khi ném được cho bởi công thức sau:

h=v0t12gt2,

trong đó, v0 là vận tốc ban đầu của vật, g = 9,8 m/s2 là gia tốc rơi tự do. Hãy tính vận tốc của vật khi nó đạt độ cao cực đại và khi nó chạm đất.

Xem lời giải »


Câu 2:

Nhận biết đạo hàm của hàm số y = xn.

a) Tính đạo hàm của hàm số y = x3 tại điểm x bất kì.

b) Dự đoán công thức đạo hàm của hàm số y = xn (n *).

Xem lời giải »


Câu 3:

Dùng định nghĩa, tính đạo hàm của hàm số y=x   tại điểm x > 0.

Xem lời giải »


Câu 4:

a) Dùng định nghĩa, tính đạo hàm của hàm số y = x3 + x2 tại điểm x bất kì.

b) So sánh: (x3 + x2)' và (x3)' + (x2)'.

Xem lời giải »


Câu 5:

b) Với y=1+x1x , tính ln y và tìm giới hạn của limx0lny

Xem lời giải »


Câu 6:

c) Đặt t = ex – 1. Tính x theo t và tìm giới hạn limx0ex1x  .

Xem lời giải »


Câu 7:

Xây dựng công thức tính đạo hàm của hàm số mũ

a) Sử dụng giới hạn limh0ex1h=1  và đẳng thức ex + h – ex = ex(eh – 1), tính đạo hàm của hàm số y = ex tại x bằng định nghĩa.

Xem lời giải »


Câu 8:

b) Sử dụng hằng đẳng thức ax = exlna (0 < a ≠ 1), hãy tính đạo hàm của hàm số y = ax.

Xem lời giải »