Tính các giới hạn sau: a) lim x 0( x + 2)^2 - 4/x; b) lim x 0 căn bậc hai của x^2 + 9  - 3/x^2


Câu hỏi:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to 0} \frac{{{{\left( {x + 2} \right)}^2} - 4}}{x}\);

b) \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 9} - 3}}{{{x^2}}}\).

Trả lời:

Lời giải:

Do mẫu thức có giới hạn là 0 khi x 0 nên ta không thể áp dụng ngay quy tắc tính giới hạn của thương hai hàm số đối với cả hai câu a và b.

a) Ta có: \(\frac{{{{\left( {x + 2} \right)}^2} - 4}}{x} = \frac{{\left[ {\left( {x + 2} \right) - 2} \right].\left[ {\left( {x + 2} \right) + 2} \right]}}{x}\)\( = \frac{{x\left( {x + 4} \right)}}{x} = x + 4\) với x ≠ 0.

Do đó \(\mathop {\lim }\limits_{x \to 0} \frac{{{{\left( {x + 2} \right)}^2} - 4}}{x}\)\( = \mathop {\lim }\limits_{x \to 0} \left( {x + 4} \right) = 0 + 4 = 4\).

b) Ta có: \(\frac{{\sqrt {{x^2} + 9} - 3}}{{{x^2}}} = \frac{{{{\left( {\sqrt {{x^2} + 9} } \right)}^2} - {3^2}}}{{{x^2}\left( {\sqrt {{x^2} + 9} + 3} \right)}}\)\( = \frac{{{x^2}}}{{{x^2}\left( {\sqrt {{x^2} + 9} + 3} \right)}} = \frac{1}{{\sqrt {{x^2} + 9} + 3}}\).

Do đó \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 9} - 3}}{{{x^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{1}{{\sqrt {{x^2} + 9} + 3}} = \frac{1}{6}\).

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Trong Thuyết tương đối của Einstein, khối lượng của vật chuyển động với vận tốc v cho bởi công thức

\(m = \frac{{{m_0}}}{{\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }}\),

trong đó m0 là khối lượng của vật khi nó đứng yên, c là vận tốc ánh sáng. Chuyện gì xảy ra với khối lượng của vật khi vận tốc của vật gần với vận tốc ánh sáng?

Xem lời giải »


Câu 2:

Cho hàm số \(f\left( x \right) = \frac{{4 - {x^2}}}{{x - 2}}\).

a) Tìm tập xác định của hàm số f(x).

b) Cho dãy số \({x_n} = \frac{{2n + 1}}{n}\). Rút gọn f(xn) và tính giới hạn của dãy (un) với un = f(xn).

c) Với dãy số (xn) bất kì sao cho xn ≠ 2 và xn 2, tính f(xn) và tìm \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right)\).

Xem lời giải »


Câu 3:

Tính \(\mathop {\lim }\limits_{x \to 1} \frac{{x - 1}}{{\sqrt x - 1}}\).

Xem lời giải »


Câu 4:

Cho hàm số \(f\left( x \right) = \frac{{\left| {x - 1} \right|}}{{x - 1}}\).

a) Cho \({x_n} = 1 - \frac{1}{{n + 1}}\) và \({x'_n} = 1 + \frac{1}{n}\). Tính yn = f(xn) và y'n = f(x'n).

b) Tìm giới hạn của các dãy số (yn) và (y'n).

c) Cho các dãy số (xn) và (x'n) bất kì sao cho xn < 1 < x'n và xn 1, x'n 1, tính \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right)\) và \[\mathop {\lim }\limits_{n \to + \infty } f\left( {{{x'}_n}} \right)\].

Xem lời giải »


Câu 5:

Cho hàm số \(H\left( t \right) = \left\{ \begin{array}{l}0\,\,\,n\^e 'u\,\,t < 0\\1\,\,\,\,n\^e 'u\,\,t \ge 0\end{array} \right.\) (hàm Heaviside, thường được dùng để mô tả việc chuyển trạng thái tắt/mở của dòng điện tại thời điểm t = 0).

Tính \(\mathop {\lim }\limits_{t \to {0^ + }} H\left( t \right)\) và \(\mathop {\lim }\limits_{t \to {0^ - }} H\left( t \right)\).

Xem lời giải »


Câu 6:

Tính các giới hạn một bên:

a) \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x - 1}}\);

b) \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{{x^2} - x + 1}}{{4 - x}}\).

Xem lời giải »


Câu 7:

Cho hàm số \(g\left( x \right) = \frac{{{x^2} - 5x + 6}}{{\left| {x - 2} \right|}}\).

Tìm \(\mathop {\lim }\limits_{x \to {2^ + }} g\left( x \right)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} g\left( x \right)\).

Xem lời giải »


Câu 8:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{1 - 2x}}{{\sqrt {{x^2} + 1} }}\);

b) \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 2} - x} \right)\).

Xem lời giải »