Xây dựng công thức tính đạo hàm của hàm số lôgarit a) Sử dụng giới hạn lim x đến 0 ln( 1+t)/t=1 và đẳng thức


Câu hỏi:

Xây dựng công thức tính đạo hàm của hàm số lôgarit

a) Sử dụng giới hạn limt0ln1+tt=1  và đẳng thức ln(x + h) – lnx = lnx+hx=ln1+hx , tính đạo hàm của hàm số y = ln x tại điểm x > 0 bằng định nghĩa.

Trả lời:

a)

Với x > 0 bất kì và h = x – x0 ta có:

f'x0=limh0f(x0+h)fx0h=limh0ln(x0+h)lnx0h

=limh0ln1+hx0hx0.x0=limh01x0.limh0ln1+hx0hx0=1x0.

Vậy hàm số y = ln x có đạo hàm là hàm số y' = 1x .

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Một vật được phóng theo phương thẳng đứng lên trên từ mặt đất với vận tốc ban đầu v0 = 20 m/s. Trong Vật lí, ta biết rằng khi bỏ qua sức cản của không khí, độ cao h so với mặt đất (tính bằng mét) của vật tại thời điểm t (giây) sau khi ném được cho bởi công thức sau:

h=v0t12gt2,

trong đó, v0 là vận tốc ban đầu của vật, g = 9,8 m/s2 là gia tốc rơi tự do. Hãy tính vận tốc của vật khi nó đạt độ cao cực đại và khi nó chạm đất.

Xem lời giải »


Câu 2:

Nhận biết đạo hàm của hàm số y = xn.

a) Tính đạo hàm của hàm số y = x3 tại điểm x bất kì.

b) Dự đoán công thức đạo hàm của hàm số y = xn (n *).

Xem lời giải »


Câu 3:

Dùng định nghĩa, tính đạo hàm của hàm số y=x   tại điểm x > 0.

Xem lời giải »


Câu 4:

a) Dùng định nghĩa, tính đạo hàm của hàm số y = x3 + x2 tại điểm x bất kì.

b) So sánh: (x3 + x2)' và (x3)' + (x2)'.

Xem lời giải »


Câu 5:

b) Sử dụng đẳng thức  logax=lnxlna(0 < a ≠ 1), hãy tính đạo hàm của hàm số y = logax.

Xem lời giải »


Câu 6:

Tính đạo hàm của hàm số y = log2(2x – 1).

Xem lời giải »


Câu 7:

Ta đã biết, độ pH của một dung dịch được xác định bởi pH = –log[H+], ở đó [H+] là nồng độ (mol/lít) của ion hydrogen. Tính tốc độ thay đổi của pH đối với nồng độ [H+].

Xem lời giải »


Câu 8:

Tính đạo hàm của các hàm số sau:

a) y = x3 – 3x2 + 2x + 1;

Xem lời giải »