Giải Toán 12 trang 81 Tập 1 Cánh diều


Với Giải Toán 12 trang 81 Tập 1 trong Bài 3: Biểu thức toạ độ của các phép toán vectơ Toán 12 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 81.

Giải Toán 12 trang 81 Tập 1 Cánh diều

Bài 5 trang 81 Toán 12 Tập 1: Trong không gian với hệ tọa độ Oxyz, cho a=3;2;1,b=2;1;2. Tính côsin của góc a,b.

Lời giải:

Ta cóBài 5 trang 81 Toán 12 Cánh diều Tập 1

Bài 6 trang 81 Toán 12 Tập 1: Trong không gian với hệ tọa độ Oxyz, cho A(– 2; 3; 0), B(4; 0; 5), C(0; 2; – 3).

a) Chứng minh rằng ba điểm A, B, C không thẳng hàng.

b) Tính chu vi tam giác ABC.

c) Tìm tọa độ trọng tâm G của tam giác ABC.

d) Tính cosBAC^.

Lời giải:

a) Ta có AB=6;  3;  5, AC=2;  1;  3.

Suy ra AB=6;  3;  5kAC=2k;k;3k với mọi k ℝ, do đó hai vectơ ABAC không cùng phương.

Vậy ba điểm A, B, C không thẳng hàng.

b) Ta có Bài 6 trang 81 Toán 12 Cánh diều Tập 1

Bài 6 trang 81 Toán 12 Cánh diều Tập 1

Ta có BC=4;2;8.

Suy ra Bài 6 trang 81 Toán 12 Cánh diều Tập 1

Chu vi tam giác ABC là C = AB + AC + BC = 70+14+221.

c) Gọi tọa độ trọng tâm G của tam giác ABC là (xG; yG; zG).

Ta có xG=2+4+03=23; yG=3+0+23=53;  zG=0+5+33=23 .

Vậy G23;53;23 .

d) Ta có Bài 6 trang 81 Toán 12 Cánh diều Tập 1

Do đó hai vectơ AB và AC vuông góc với nhau hay hai đường thẳng AB và AC vuông góc với nhau nên BAC^=90°. Vậy cosBAC^ = 0.

Bài 7 trang 81 Toán 12 Tập 1: Cho hình hộp ABCD.A'B'C'D', biết A(1; 0; 1), B(2; 1; 2), D(1; – 1; 1), C'(4; 5; – 5). Hãy chỉ ra tọa độ của một vectơ khác 0  vuông góc với cả hai vectơ trong mỗi trường hợp sau:

a) AC và B'D';

b) AC' và BD.

Lời giải:

a) Ta có AB=1;  1;  1 , AD=0;1;0,

Vì ABCD.A'B'C'D' là hình hộp nên ABCD là hình bình hành, do đó

AC=AB+AD=1+0;1+1;1+0=1;0;1.

Ta có BD=1;  2;1.

Vì ABCD.A'B'C'D' là hình hộp nên B'D'=BD=1;2;1 .

Ta có Bài 7 trang 81 Toán 12 Cánh diều Tập 1

Chọn a=2;0;2, vectơ a vuông góc với cả hai vectơ ACB'D'.

b) Ta có AC'=3;5;6, BD=1;  2;1.

Bài 7 trang 81 Toán 12 Cánh diều Tập 1

Chọn b=17;9;1, vectơ b vuông góc với cả hai vectơ AC'BD.

Bài 8 trang 81 Toán 12 Tập 1: Một chiếc đèn tròn được treo song song với mặt phẳng nằm ngang bởi ba sợi dây không dãn xuất phát từ điểm O trên trần nhà lần lượt buộc vào ba điểm A, B, C trên đèn tròn sao cho tam giác ABC đều (Hình 38). Độ dài của ba đoạn dây OA, OB, OC đều bằng L. Trọng lượng của chiếc đèn là 24 N và bán kính của chiếc đèn là 18 in (1 inch = 2,54 cm). Gọi F là độ lớn của các lực căng F1,F2,F3 trên mỗi sợi dây. Khi đó, F = F(L) là một hàm số với biến số là L.

Bài 8 trang 81 Toán 12 Cánh diều Tập 1

a) Xác định công thức tính hàm số F = F(L).

b) Khảo sát và vẽ đồ thị hàm số F = F(L).

c) Tìm chiều dài tối thiểu của mỗi sợi dây, biết rằng mỗi sợi dây đó được thiết kế để chịu được lực căng tối đa là 10 N.

Lời giải:

Bài 8 trang 81 Toán 12 Cánh diều Tập 1

a) Ta có 18 in = 45,72 cm = 0,4572 m.

Gọi G là trọng tâm tam giác ABC.

Vì tam giác ABC đều nên G là tâm đường tròn ngoại tiếp tam giác ABC.

Do đó, GA = GB = GC = 0,4572 m.

Theo bài ra ta có OA = OB = OC = L nên OG (ABC) và Bài 8 trang 81 Toán 12 Cánh diều Tập 1

Do đó, Bài 8 trang 81 Toán 12 Cánh diều Tập 1

Vì vậy, tồn tại hằng số c ≠ 0 sao cho: F1=cOA;  F2=cOB;  F3=cOC .

Suy ra F1+F2+F3=cOA+OB+OC.

Theo quy tắc ba điểm ta có

OA+OB+OC=OG+GA+OG+GB+OG+GC

                     =3OG+GA+GB+GC=3OG

(do G là trọng tâm tam giác ABC nên GA+GB+GC=0 ).

Do đó, F1+F2+F3=3cOG.

Mặt khác ta lại có F1+F2+F3=P, với P là trọng lực tác dụng lên chiếc đèn.

Mà trọng lượng tác dụng lên chiếc đèn là 24 N nên Bài 8 trang 81 Toán 12 Cánh diều Tập 1

Từ đó suy ra Bài 8 trang 81 Toán 12 Cánh diều Tập 1

Tam giác OAG vuông tại G (do OG (ABC)) nên ta suy ra

OG=OA2GA2=L20,45722 (m) với L > 0,4572.

Do đó, Bài 8 trang 81 Toán 12 Cánh diều Tập 1

Khi đó, Bài 8 trang 81 Toán 12 Cánh diều Tập 1

Vậy F=FL=8LL20,45722 với L > 0,4572.

b) Xét hàm số F=FL=8LL20,45722 với L (0,4572; + ∞).

+ Tập xác định: D = (0,4572; + ∞).

+ Sự biến thiên

- Giới hạn tại vô cực giới hạn vô cực và các đường tiệm cận:

Bài 8 trang 81 Toán 12 Cánh diều Tập 1 Do đó, đường thẳng F = 8 là tiệm cận ngang của đồ thị hàm số.

Bài 8 trang 81 Toán 12 Cánh diều Tập 1 Do đó, đường thẳng L = 0,4572 là tiệm cận đứng của đồ thị hàm số.

+ Đạo hàm F'L=80,45722L20,45722L20,45722 < 0 với mọi L (0,4572; + ∞).

+ Bảng biến thiên:

Bài 8 trang 81 Toán 12 Cánh diều Tập 1

Hàm số nghịch biến trên khoảng (0,4572; + ∞).

Hàm số không có cực trị.

+ Đồ thị hàm số được vẽ như hình dưới đây:

Bài 8 trang 81 Toán 12 Cánh diều Tập 1

c) Ta có lực căng tối đa của mỗi sợi dây là 10 N.

Với F(L) = 10, ta có 8LL20,45722=10 . Từ đó suy ra

5L20,45722=4L

25L2 – 5,255796 = 16L2

L = 0,762 (0,4572; + ∞).

Vậy chiều dài tối thiểu của mỗi sợi dây là L = 0,762 m = 76,2 cm = 30 in.

Lời giải bài tập Toán 12 Bài 3: Biểu thức toạ độ của các phép toán vectơ hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác: