Giải Toán 12 trang 46 Tập 2 Chân trời sáng tạo


Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 12 trang 46 Tập 2 trong Bài 2: Phương trình đường thẳng trong không gian Toán 12 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 46.

Giải Toán 12 trang 46 Tập 2 Chân trời sáng tạo

Thực hành 2 trang 46 Toán 12 Tập 2: Cho đường thẳng d có phương trình tham số x=1+8ty=4tz=3+12t

a) Tìm hai vectơ chỉ phương của d.

b) Tìm ba điểm trên d.

Lời giải:

a) Đường thẳng d nhận a=8;4;12 làm một vectơ chỉ phương.

b=14a=2;1;3 cũng là một vectơ chỉ phương của đường thẳng d.

b) Cho t = 0, ta có A(−1; 0; 3).

Cho t = 1, ta có B(7; −4; 15).

Cho t = 2, ta có C(15; −8; 27).

Vậy 3 điểm A, B, C là ba điểm thuộc d.

Thực hành 3 trang 46 Toán 12 Tập 2: Viết phương trình tham số của đường thẳng d đi qua điểm A(5; 0; −7) và nhận v=9;0;2 làm vectơ chỉ phương. Đường thẳng d có đi qua điểm M(−4; 0; −5) không?

Lời giải:

Đường thẳng d đi qua điểm A(5; 0; −7) và nhận v=9;0;2 làm vectơ chỉ phương có phương trình tham số là x=5+9ty=0z=72t.

Thay tọa độ điểm M vào phương trình đường thẳng d ta có:

4=5+9t0=05=72tt=1t=1(luôn đúng).

Vậy điểm M ∈ d.

Hoạt động khám phá 3 trang 46 Toán 12 Tập 2: Cho đường thẳng d có phương trình tham số x=x0+a1ty=y0+a2tz=z0+a3t với a1, a2, a3 đều khác 0.

Lấy điểm M(x; y; z) bất kì thuộc d. So sánh các biểu thức: xx0a1;yy0a2;zz0a3

Lời giải:

Ta có x=x0+a1ty=y0+a2tz=z0+a3txx0a1=tyy0a2=tzz0a3=t.

Mà M ∈ d nên xx0a1=yy0a2=zz0a3

Thực hành 4 trang 46 Toán 12 Tập 2: Viết phương trình chính tắc của đường thẳng d đi qua điểm M0(5; 0; −6) và nhận a=3;2;4 làm vectơ chỉ phương.

Lời giải:

Đường thẳng d đi qua điểm M0(5; 0; −6) và nhận a=3;2;4 làm vectơ chỉ phương có phương trình chính tắc là: x53=y2=z+64

Lời giải bài tập Toán 12 Bài 2: Phương trình đường thẳng trong không gian hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác: