Giải Toán 12 trang 11 Tập 2 Kết nối tri thức


Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 12 trang 11 Tập 2 trong Bài 11: Nguyên hàm Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 11.

Giải Toán 12 trang 11 Tập 2 Kết nối tri thức

Bài 4.1 trang 11 Toán 12 Tập 2: Trong mỗi trường hợp sau, hàm số F(x) có là một nguyên hàm của hàm số f(x) trên khoảng tương ứng không? Vì sao?

a) F(x) = xlnx và f(x) = 1 + lnx trên khoảng (0; +∞);

b) F(x) = esinx và f(x) = ecosx trên ℝ.

Lời giải:

a) Có F'(x) = (xlnx)' = lnx+x.1x=1+lnx = f(x).

Do đó, hàm số F(x) = xlnx là một nguyên hàm của hàm số f(x) = 1 + lnx trên khoảng (0; +∞).

b) Có F'(x) = (esinx)' = esinx.(sinx)' = cosx.esinx ≠ f(x) = ecosx.

Do đó, hàm số F(x) = esinx không là nguyên hàm của hàm số f(x) = ecosx trên ℝ.

Bài 4.2 trang 11 Toán 12 Tập 2: Tìm nguyên hàm của các hàm số sau:

a) f(x) = 3x2 + 2x – 1;                                 b) f(x) = x3 – x;

c) f(x) = (2x + 1)2;                                       d) fx=2x1x2

Lời giải:

a) 3x2+2x1dx=3x2dx+2xdxdx=x3+x2x+C

b) x3xdx=x3dxxdx=x44x22+C

c) 2x+12dx=4x2+4x+1dx

=4x2dx+4xdx+dx=43x3+2x2+x+C

d) 2x1x2dx=4x24+1x2dx=4x2dx4dx+x2dx=43x34x1x+C

Bài 4.3 trang 11 Toán 12 Tập 2: Tìm:

a) 3x+1x3dx;                           b) x7x23dxx>0;

c) 2x+12x2dx;             d) 2x+3x2dx

Lời giải:

a) 3x+1x3dx=3x12dx+x13dx=2x32+32x23+C=2xx+32x23+C

b) x7x23dx=7x52dx3x12dx=2x722x32+C=2x72x3+C

c) 2x+12x2dx=4x2+4x+1x2dx=4+4x+1x2dx

=4dx+41xdx+1x2dx=4x+4lnx1x+C

d) 2x+3x2dx=2xdx+3x2dx=2xln23x+C

Bài 4.4 trang 11 Toán 12 Tập 2: Tìm:

a) 2cosx3sin2xdx;                     b) 4sin2x2dx;

c) sinx2cosx22dx;                      d) x+tan2xdx

Lời giải:

a) 2cosx3sin2xdx=2cosxdx31sin2xdx=2sinx+3cotx+C

b) 4sin2x2dx=21cosxdx=2dx2cosxdx=2x2sinx+C

c) sinx2cosx22dx=12sinx2cosx2dx=dxsinxdx=x+cosx+C

d) x+tan2xdx=xdx+1cos2x1dx

=xdx+1cos2xdxdx=x22+tanxx+C

Bài 4.5 trang 11 Toán 12 Tập 2: Cho hàm số y = f(x) xác định trên khoảng (0; +∞). Biết rằng, f'x=2x+1x2 với mọi x ∈ (0; +∞) và f(1) = 1. Tính giá trị f(4).

Lời giải:

Có fx=f'xdx=2x+1x2dx=x21x+C

Vì f(1) = 1 nên 1 – 1 + C = 1 Þ C = 1.

Do đó fx=x21x+1

Vậy f4=4214+1=674

Bài 4.6 trang 11 Toán 12 Tập 2: Cho hàm số y = f(x) có đồ thị là (C). Xét điểm M(x; f(x)) thay đổi trên (C). Biết rằng, hệ số góc của tiếp tuyến của đồ thị (C) tại M là kM = (x – 1)2 và điểm M trùng với gốc tọa độ khi nó nằm trên trục tung. Tìm biểu thức f(x).

Lời giải:

Vì hệ số góc của tiếp tuyến của đồ thị (C) tại M là kM = (x – 1)2 nên ta có:

fx=x12dx=x22x+1dx=x2dx2xdx+dx=x33x2+x+C

Vì điểm M trùng với gốc tọa độ khi nó nằm trên trục tung nên f(0) = 0.

Do đó f0=03302+0+C=0C=0

Do đó fx=x33x2+x

Bài 4.7 trang 11 Toán 12 Tập 2: Một viên đạn được bắn thẳng đứng lên trên từ mặt đất. Giả sử tại thời điểm t giây (coi t = 0 là thời điểm viên đạn được bắn lên), vận tốc của nó được cho bởi v(t) = 160 – 9,8t (m/s). Tìm độ cao của viên đạn (tính từ mặt đất):

a) Sau t = 5 giây;

b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất).

Lời giải:

Gọi S(t) là độ cao của viên đạn bắn lên từ mặt đất sau t giây kể từ thời điểm đạn được bắn lên.

Khi đó St=vtdt=1609,8tdt=160t4,9t2+C

Vì S(0) = 0 nên 160.0 – 4,9.0 + C = 0 => C = 0.

Do đó S(t) = −4,9t2 + 160 t.

a) Sau 5 giây độ cao của viên đạn là: S(5) = −4,9.52 + 160.5 = 677,5 (m).

b) Có S(t) = −4,9t2 + 160t

11049t22.7t.8007+64000049+6400049

1107t80072+64000496400049

Viên đạn đạt độ cao lớn nhất là 64000491306,1m khi t=80049giây.

Lời giải bài tập Toán 12 Bài 11: Nguyên hàm hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: