Giải Toán 12 trang 7 Tập 2 Kết nối tri thức
Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 12 trang 7 Tập 2 trong Bài 11: Nguyên hàm Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 7.
Giải Toán 12 trang 7 Tập 2 Kết nối tri thức
Luyện tập 3 trang 7 Toán 12 Tập 2: Cho hàm số f(x) = xn (n ∈ ℕ*).
a) Chứng minh rằng hàm số là một nguyên hàm của hàm số f(x). Từ đó tìm .
b) Từ kết quả câu a, tìm (k là hằng số thực khác 0).
Lời giải:
a) Vì nên hàm số là một nguyên hàm của hàm số f(x).
Ta có .
b) Ta có .
HĐ4 trang 7 Toán 12 Tập 2: Cho f(x) và g(x) là hai hàm số liên tục trên K. Giả sử F(x) là một nguyên hàm của f(x), G(x) là một nguyên hàm của g(x) trên K.
a) Chứng minh F(x) + G(x) là một nguyên hàm của hàm số f(x) + g(x) trên K.
b) Nêu nhận xét về và .
Lời giải:
a) Vì F(x) là một nguyên hàm của f(x) nên F'(x) = f(x) và G(x) là một nguyên hàm của g(x) nên G'(x) = g(x).
Ta có (F(x) + G(x))' = F'(x) + G'(x) = f(x) + g(x).
Do đó F(x) + G(x) là một nguyên hàm của hàm số f(x) + g(x) trên K.
b) Ta có với C là hằng số bất kì.
Có với C1; C2 là các hằng số bất kì.
Do đó .
Ta có thể biểu diễn C = C1 + C2.
Do đó .
Vậy .
Luyện tập 4 trang 7 Toán 12 Tập 2: Tìm
a) ; b)
Lời giải:
a) .
b)
Lời giải bài tập Toán 12 Bài 11: Nguyên hàm hay khác: