Bài 3 trang 104 Toán 8 Tập 1 Cánh diều


Cho hình chữ nhật ABCD. Trên cạnh AB lấy hai điểm M, N sao cho AM = NB < AB. Chứng minh tứ giác MNCD là hình thang cân.

Giải Toán 8 Bài 3: Hình thang cân - Cánh diều

Bài 3 trang 104 Toán 8 Tập 1: Cho hình chữ nhật ABCD. Trên cạnh AB lấy hai điểm M, N sao cho AM = NB < 12AB. Chứng minh tứ giác MNCD là hình thang cân.

Lời giải:

Bài 3 trang 104 Toán 8 Tập 1 Cánh diều | Giải Toán 8

Do ABCD là hình chữ nhật nên AD = BC, DAM^=CBN^=90° và AB // CD.

Xét ΔAMD và ΔBNC có:

DAM^=CBN^=90° (chứng minh trên);

AD = BC (chứng minh trên);

AM = BN (giả thiết).

Do đó ΔAMD = ΔBNC (hai cạnh góc vuông).

Suy ra AMD^=BNC^ (hai góc tương ứng).

Mặt khác AMD^+DMN^=180°,BNC^+CNM^=180° (kề bù)

Suy ra DMN^=CNM^.

Tứ giác MNCD có MN // CD (do AB // CD) nên là hình thang.

Lại có DMN^=CNM^ 

Suy ra hình thang MNCD là hình thang cân.

Lời giải bài tập Toán 8 Bài 3: Hình thang cân hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác: