Bài 7 trang 121 Toán 8 Tập 1 Cánh diều


Cho tứ giác ABCD có . Chứng minh ABCD là hình bình hành.

Giải Toán 8 Bài tập cuối chương 5 - Cánh diều

Bài 7 trang 121 Toán 8 Tập 1: Cho tứ giác ABCD có DAB^=BCD^,ABD^=CDB^. Chứng minh ABCD là hình bình hành.

Lời giải:

Bài 7 trang 121 Toán 8 Tập 1 Cánh diều | Giải Toán 8

Ta có ABD^=CDB^ mà hai góc này ở vị trí so le trong nên AB // CD.

Từ AB // CD, suy ra CDA^+DAB^=180°ABC^+BCD^=180° (các cặp góc trong cùng phía)

Lại có DAB^=BCD^ nên CDA^=ABC^.

Xét tứ giác ABCD có DAB^=BCD^ (giả thiết) và CDA^=ABC^ (chứng minh trên)

Suy ra ABCD là hình bình hành (các cặp góc đối bằng nhau).

Lời giải bài tập Toán 8 Bài tập cuối chương 5 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác: