X

Giải Toán 8 Cánh diều

Luyện tập 2 trang 78 Toán 8 Tập 2 Cánh diều


Cho , chứng minh tam giác CDM vuông tại M.

Giải Toán 8 Bài 6: Trường hợp đồng dạng thứ nhất của tam giác - Cánh diều

Luyện tập 2 trang 78 Toán 8 Tập 2: Cho Hình 64, chứng minh tam giác CDM vuông tại M.

Luyện tập 2 trang 78 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Lời giải:

Luyện tập 2 trang 78 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Ta có ADBM=23;  DMMC=34,5=23nên ADBM=DMMC  =23.

Xét ∆ADM và ∆BMC có:

A^=B^=90°;

ADBM=DMMC

Suy ra ∆ADMᔕ∆BMC.

Do đó AMD^=BCM^ (hai góc tương ứng)

BCM^+BMC^=90° (tổng hai góc nhọn trong tam giác BCM vuông tại B bằng 90°)

Suy ra AMD^+BMC^=90°

Lại có AMD^+DMC^+BMC^=180°

Nên DMC^=180°AMD^+BMC^=180°90°=90°

Do đó ∆CDM vuông tại M.

Lời giải bài tập Toán 8 Bài 6: Trường hợp đồng dạng thứ nhất của tam giác hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác: