Bài 3.27 trang 66 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8
Cho tam giác ABC, đường cao AH. Gọi M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN. Chứng minh tứ giác AHCN là hình chữ nhật.
Giải Toán 8 Bài 13: Hình chữ nhật - Kết nối tri thức
Bài 3.27 trang 66 Toán 8 Tập 1: Cho tam giác ABC, đường cao AH. Gọi M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN. Chứng minh tứ giác AHCN là hình chữ nhật.
Lời giải:
Theo đề bài, M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN.
Nên tứ giác ANCH có hai đường chéo AC và HN cắt nhau tại trung điểm M của mỗi đường.
Suy ra tứ giác ANCH là hình bình hành.
Hình bình hành ANCH có nên tứ giác ANCH là hình chữ nhật.
Lời giải bài tập Toán 8 Bài 13: Hình chữ nhật hay, chi tiết khác:
HĐ1 trang 64 Toán 8 Tập 1: Trong các hình dưới đây, hình nào là hình chữ nhật? Tại sao? ....
Luyện tập 1 trang 65 Toán 8 Tập 1: Cho hình chữ nhật ABCD. Hai đường chéo AC, BD cắt nhau tại O ....
HĐ3 trang 65 Toán 8 Tập 1: Cho hình bình hành ABCD có góc A vuông. Tính các góc B, C, D ....