X

Toán 8 Kết nối tri thức

Bài 4.17 trang 88 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8


Cho hình bình hành ABCD, một đường thẳng đi qua D cắt AC, AB, CB theo thứ tự tại M, N, K. Chứng minh rằng: DM = MN.MK.

Giải Toán 8 Luyện tập chung - Kết nối tri thức

Bài 4.17 trang 88 Toán 8 Tập 1: Cho hình bình hành ABCD, một đường thẳng đi qua D cắt AC, AB, CB theo thứ tự tại M, N, K. Chứng minh rằng: DM2 = MN.MK.

Lời giải:

Bài 4.17 trang 88 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Vì ABCD là hình bình hành nên AB // CD, AD // BC suy ra AN // cD, ad // ck.

Áp dụng định lí Thalès vào tam giác AMN có AN // CD, ta được:

DMMN=CMAM           (1)

Áp dụng định lí Thalès vào tam giác ADM có CK // AD, ta được:

MKDM=CMAM           (2)

Từ (1) và (2) suy ra: DMMN=MKDM=CMAM .

Do đó DM2 = MN . MK(đpcm).

Lời giải bài tập Toán 8 Luyện tập chung hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác: