X

Toán 8 Kết nối tri thức

Bạn Thành dùng một miếng bìa hình chữ nhật để làm một chiếc hộp (không nắp) bằng cách


Câu hỏi:

Bạn Thành dùng một miếng bìa hình chữ nhật để làm một chiếc hộp (không nắp) bằng cách cắt bốn hình vuông cạnh x centimét ở bốn góc (H.1.3) rồi gấp lại. Biết rằng miếng bìa có chiều dài là y centimét, chiều rộng là z centimét.

Bạn Thành dùng một miếng bìa hình chữ nhật để làm một chiếc hộp (không nắp) bằng cách (ảnh 1)

Tìm đa thức (ba biến x, y, z) biểu thị thể tích của chiếc hộp. Xác định bậc của đa thức đó.

Trả lời:

Cắt miếng bìa hình chữ nhật để làm một chiếc hộp (không nắp) thì chiếc hộp có:

• Chiều dài của đáy chiếc hộp là: y – 2x (cm)

• Chiều rộng của đáy chiếc hộp là: z – 2x (cm)

• Chiều rộng của chiếc hộp là x (cm)

Đa thức biểu thị thể tích của chiếc hộp là:

x(y – 2x)(z – 2x) = (xy – 2x2)(z – 2x) = xyz – 2x2y – 2x2z + 4x3.

Đa thức xyz – 2x2y – 2x2z + 4x3 có bậc là 3.

Xem thêm lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết:

Câu 1:

Đơn thức −23x2yz3

A. hệ số −2, bậc 8.

B. hệ số −23, bậc 5.

C. hệ số −1, bậc 9.

D. hệ số −23, bậc 6.

Xem lời giải »


Câu 2:

Gọi T là tổng, H là hiệu của hai đa thức 3x2y – 2xy2 + xy và –2x2y + 3xy2 + 1. Khi đó:

A. T = x2y – xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.

B. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.

C. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 – xy – 1.

D. T = x2y + xy2 + xy – 1 và H = 5x2y + 5xy2 + xy – 1.

Xem lời giải »


Câu 3:

Tích của hai đơn thức 6x2yz và −2y2z2 là đơn thức

A. 4x2y3z3.

B. −12x2y3z3.

C. −12x3y3z3.

D. 4x3y3z3.

Xem lời giải »


Câu 4:

Khi chia đa thức 8x3y2 – 6x2y3 cho đơn thức −2xy, ta được kết quả là

A. −4x2y + 3xy2.

B. −4xy2 + 3x2y.

C. −10x2y + 4xy2.

D. −10x2y + 4xy2.

Xem lời giải »


Câu 5:

Biết rằng D là một đơn thức sao cho –2x3y4 : D = xy2. Hãy tìm thương của phép chia:

(10x5y2 – 6x3y4 + 8x2y5) : D.

Xem lời giải »


Câu 6:

Làm phép chia sau theo hướng dẫn:

[8x3(2x – 5)2 – 6x2(2x – 5)3 + 10x(2x – 5)2] : 2x(2x – 5)2.

Hướng dẫn: Đặt y = 2x – 5.

Xem lời giải »