X

Toán 8 Kết nối tri thức

c) Tứ giác có hai cạnh đối nào cũng song song là hình bình hành.


Câu hỏi:

c) Tứ giác có hai cạnh đối nào cũng song song là hình bình hành.

Trả lời:

c) Tứ giác có hai cạnh đối nào cũng song song hay có hai cặp cạnh đối song song nên

tứ giác đó là hình bình hành.

Vậy khẳng định c) đúng.

Xem thêm lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết:

Câu 1:

Hai con đường lớn a và b cắt nhau tạo thành một góc. Bên trong góc đó có một điểm dân cư O. Phải mở một con đường thẳng đi qua O như thế nào để theo con đường đó, hai đoạn đường từ điểm O đến con đường a và b bằng nhau (các con đường đều là đường thẳng) (H.3.27)?

Hai con đường lớn a và b cắt nhau tạo thành một góc. Bên trong góc đó có một điểm (ảnh 1)

Xem lời giải »


Câu 2:

Trong Hình 3.28, có một hình bình hành. Đó là hình nào? Em có thể giải thích tại sao không?

Trong Hình 3.28, có một hình bình hành. Đó là hình nào? Em có thể giải thích tại sao không? (ảnh 1)

Xem lời giải »


Câu 3:

Vẽ hình bình hành, biết hai cạnh liên tiếp bằng 3 cm, 4 cm và góc xen giữa hai cạnh đó bằng 60o. Hãy mô tả cách vẽ và giải thích tại sao hình vẽ được là hình bình hành.

Xem lời giải »


Câu 4:

Hãy nêu các tính chất của hình bình hành mà em đã biết.

Xem lời giải »


Câu 5:

Tính các góc còn lại của hình bình hành ABCD trong Hình 3.35.

Tính các góc còn lại của hình bình hành ABCD trong Hình 3.35. (ảnh 1)

Xem lời giải »


Câu 6:

Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AB, CD. Chứng minh BF = DE.

Xem lời giải »


Câu 7:

Trong mỗi trường hợp sau đây, tứ giác nào là hình bình hành, tứ giác nào không là hình bình hành? Vì sao?

Trong mỗi trường hợp sau đây, tứ giác nào là hình bình hành, tứ giác nào không là hình bình hành? Vì sao? (ảnh 1)

Xem lời giải »


Câu 8:

Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AB, CD. Chứng minh rằng:

a) Hai tứ giác AEFD, AECF là những hình bình hành;

Xem lời giải »