HĐ1 trang 53 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8
Cho hình thang cân ABCD, A // CD và AB < CD (H.3.16).
Giải Toán 8 Bài 11: Hình thang cân - Kết nối tri thức
HĐ1 trang 53 Toán 8 Tập 1: Cho hình thang cân ABCD, AB // CD và AB < CD (H.3.16).
a) Từ A và B kẻ AH ⊥ DC, BI ⊥ DC, H ∈ CD, I ∈ CD. Chứng minh rằng AH = BI bằng cách chứng minh ∆AHI = ∆IBA.
b) Chứng minh ∆AHD = ∆BIC, từ đó suy ra AD = BC.
Lời giải:
a) Vì ABCD là hình thang cân (AB // CD) nên (hai góc so le trong).
Ta có AH ⊥ DC, BI ⊥ DC suy ra AH // BI.
Do đó (hai góc so le trong).
Xét ∆AHI và ∆IBA có:
(chứng minh trên);
Cạnh AI chung;
(hai góc so le trong).
Do đó ∆AHI = ∆IBA (c.g.c).
Suy ra AH = BI (hai cạnh tương ứng).
b) Vì ABCD là hình thang cân (AB // CD) nên (1)
Xét ∆AHD vuông tại H có (2) (trong tam giác vuông, hai góc nhọn có tổng số đo bằng 90°).
Tương tự, ∆BIC vuông tại I có (3)
Từ (1), (2) và (3) suy ra .
Xét ∆AHD và ∆BIC có:
(vì AH ⊥ DC, BI ⊥ DC, H ∈ CD, I ∈ CD);
AH = BI (chứng minh câu a);
(chứng minh trên).
Do đó ∆AHD = ∆BIC (cạnh góc vuông – góc nhọn kề).
Suy ra AD = BC (hai cạnh tương ứng).
Lời giải bài tập Toán 8 Bài 11: Hình thang cân hay, chi tiết khác:
Luyện tập 2 trang 53 Toán 8 Tập 1: Cho tứ giác ABCD như Hình 3.18. Biết rằng ....
Thực hành trang 55 Toán 8 Tập 1: a) Vẽ hình thang có hai đường chéo bằng nhau theo các bước sau ....