Giải Toán 8 trang 24 Tập 1 Kết nối tri thức
Với Giải Toán 8 trang 24 Tập 1 trong Bài 5: Phép chia đa thức cho đơn thức Toán lớp 8 Tập 1 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 8 trang 24.
Giải Toán 8 trang 24 Tập 1 Kết nối tri thức
Luyện tập 2 trang 24 Toán 8 Tập 1: Làm tính chia (6x4y3 – 8x3y4 + 3x2y2) : 2xy2.
Lời giải:
Ta có (6x4y3 – 8x3y4 + 3x2y2) : 2xy2
= 6x4y3 : 2xy2 – 8x3y4 : 2xy2 + 3x2y2 : 2xy2
= 3x3y – 4x2y2 + .
Vận dụng 2 trang 24 Toán 8 Tập 1: Tìm đa thức A sao cho A . (−3xy) = 9x3y + 3xy3 – 6x2y2.
Lời giải:
Ta có A . (−3xy) = 9x3y + 3xy3 – 6x2y2.
Suy ra A = (9x3y + 3xy3 – 6x2y2) : (−3xy)
= 9x3y : (−3xy) + 3xy3 : (−3xy) – 6x2y2 : (−3xy)
= −3x2 − y2 + 2xy.
Bài 1.30 trang 24 Toán 8 Tập 1:
a) Tìm đơn thức M, biết rằng .
b) Tìm đơn thức N sao cho N : 0,5xy2z = −xy.
Lời giải:
a) Ta có
Suy ra .
Vậy .
b) Ta có N : 0,5xy2z = −xy
Suy ra N = −xy . 0,5xy2z = −0,5(x . x)(y . y2)z = −0,5x2y3z.
Vậy N = −0,5x2y3z.
Bài 1.31 trang 24 Toán 8 Tập 1: Cho đa thức A = 9xy4 – 12x2y3 + 6x3y2. Với mỗi trường hợp sau đây, xét xem A có chia hết cho đơn thức B hay không? Thực hiện phép chia trong trường hợp A chia hết cho B.
a) B = 3x2y;
b) B = −3xy2.
Lời giải:
a) Đa thức A = 9xy4 – 12x2y3 + 6x3y2 không chia hết cho đơn thức B = 3x2y vì đơn thức 9xy4 không chia hết cho 3x2y.
Do đó, đa thức A = 9xy4 – 12x2y3 + 6x3y2 không chia hết cho đơn thức B = 3x2y.
b) Đa thức A = 9xy4 – 12x2y3 + 6x3y2 chia hết cho đơn thức B = −3xy2.
Ta có: A : B = 9xy4 : (−3xy2) – 12x2y3 : (−3xy2) + 6x3y2 : (−3xy2)
= −3y2 + 4xy − 2x2.
Bài 1.32 trang 24 Toán 8 Tập 1: Thực hiên phép chia (7y5z2 – 14y4z3 + 2,1y3z4) : (−7y3z2).
Lời giải:
Ta có (7y5z2 – 14y4z3 + 2,1y3z4) : (−7y3z2)
= 7y5z2 : (−7y3z2) – 14y4z3 : (−7y3z2) + 2,1y3z4 : (−7y3z2)
= −y2 + 2yz – 0,3z2.
Lời giải bài tập Toán 8 Bài 5: Phép chia đa thức cho đơn thức Kết nối tri thức hay khác: