X

Toán 9 Cánh diều

Bài 9 trang 43 Toán 9 Tập 1 Cánh diều


Một nhà máy sản xuất xi măng mỗi ngày đều sản xuất được 100 tấn xi măng. Lượng xi măng tồn trong kho của nhà máy là 300 tấn. Hỏi nhà máy đó cần sản xuất trong ít nhất bao nhiêu ngày để có thể xuất đi 15 300 tấn xi măng (tính cả lượng xi măng tồn trong kho)?

Giải Toán 9 Bài tập cuối chương 2 - Cánh diều

Bài 9 trang 43 Toán 9 Tập 1: Một nhà máy sản xuất xi măng mỗi ngày đều sản xuất được 100 tấn xi măng. Lượng xi măng tồn trong kho của nhà máy là 300 tấn. Hỏi nhà máy đó cần sản xuất trong ít nhất bao nhiêu ngày để có thể xuất đi 15 300 tấn xi măng (tính cả lượng xi măng tồn trong kho)?

Lời giải:

Gọi x (ngày) là số ngày sản xuất xi măng của nhà máy đó (x > 0).

Khối lượng xi măng sản xuất được sau x ngày là: 100x (tấn).

Khối lượng xi măng tính cả lượng xi măng tồn trong kho sau x ngày là: 100x + 300 (tấn).

Theo bài, sau x ngày thì nhà máy xuất đi ít nhất 15 300 tấn xi măng nên ta có bất phương trình: 100x + 300 ≥ 15 300.

Giải bất phương trình:

100x + 300 ≥ 15 300

100x ≥ 15 000

x ≥ 150.

Vậy nhà máy đó cần sản xuất trong ít nhất là 150 ngày để có thể xuất đi 15 300 tấn xi măng (tính cả lượng xi măng tồn trong kho).

Lời giải bài tập Toán 9 Bài tập cuối chương 2 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác: