X

Toán 9 Chân trời sáng tạo

Giải Toán 9 trang 18 Tập 2 Chân trời sáng tạo


Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 9 trang 18 Tập 2 trong Bài 3: Định lí Viète Toán lớp 9 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 18.

Giải Toán 9 trang 18 Tập 2 Chân trời sáng tạo

Khởi động trang 18 Toán 9 Tập 2: Khu vườn nhà kính hình chữ nhật của bác Thanh có nửa chu vi bằng 60 m, diện tích 884 m2. Làm thế nào để tính chiều dài và chiều rộng của khu vườn?

Khởi động trang 18 Toán 9 Tập 2 Chân trời sáng tạo | Giải Toán 9

Lời giải:

Sau bài học này ta giải quyết được bài toán như sau:

Gọi x1, x2 (m) lần lượt là chiều dài và chiều rộng của khu vườn (0 < x1, x2 < 60).

Nửa chu vi khu vườn hình chữ nhật là 60 m hay x1 + x2 = 60.

Diện tích khu vườn hình chữ nhật là 884 m2 hay x1 . x2 = 884.

Khi đó x1, x2 là nghiệm của phương trình x2 − 60x + 884 = 0.

Ta có Δ'=3021884=16>0;  Δ'=16=4.

Do đó x1=30+41=34;  x2=3041=26 (thỏa mãn).

Vậy chiều dài khu vườn là 34 m và chiều rộng là 26 m.

Khám phá 1 trang 18 Toán 9 Tập 2: Cho phương trình ax2 + bx + x = 0 (a ≠ 0) có hai nghiệm x1, x2. Tính x1 + x2 và x1 . x2.

Lời giải:

Phương trình ax2 + bx + x = 0 (a ≠ 0) có hai nghiệm x1, x2 nên ta có:

• x1+x2=b+Δ2a+bΔ2a=2b2a=ba;

• x1x2=b+Δ2abΔ2a=b2Δ4a2=b2b24ac4a2=4ac4a2=ca.

Vậy x1+x2=ba;  x1x2=ca.

Lời giải bài tập Toán 9 Bài 3: Định lí Viète hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác: