X

Toán 9 Chân trời sáng tạo

Giải Toán 9 trang 19 Tập 2 Chân trời sáng tạo


Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 9 trang 19 Tập 2 trong Bài 3: Định lí Viète Toán lớp 9 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 19.

Giải Toán 9 trang 19 Tập 2 Chân trời sáng tạo

Thực hành 1 trang 19 Toán 9 Tập 2: Tính tổng và tích các nghiệm (nếu có) của mỗi phương trình:

a) x227x+7=0;

b) 15x2 – 2x – 7 = 0;

c) 35x2 – 12x + 2 = 0.

Lời giải:

a) Ta có Δ=272417=0 nên phương trình có nghiệm kép x1, x2.

Theo định lí Viète, ta có: x1+x2=27;  x1x2=7.

b) Ta có Δ=224157=424>0 nên phương trình có hai nghiệm x1, x2.

Theo định lí Viète, ta có: x1+x2=215;  x1x2=715.

c) Ta có Δ=1224352=136<0 nên phương trình vô nghiệm.

Thực hành 2 trang 19 Toán 9 Tập 2: Cho phương trình x2 + 4x – 21 = 0. Gọi x1, x2 là hai nghiệm của phương trình, hãy tính giá trị của các biểu thức:

a) 2x1+2x2;

b) x12+x22x1x2.

Lời giải:

Phương trình x2 + 4x – 21 = 0 có ∆' = 42 – 4 . (–21) = 100 > 0

Nên phương trình đã cho có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có: x1+x2=41=4;  x1x2=211=21.

a) Ta có 2x1+2x2=2x1+x2x1x2=2421=821.

Vậy 2x1+2x2=821.

b) Ta có x12+x22x1x2=x12+2x1x2+x223x1x2=x1+x223x1x2

= (–4)2 – 3. (–21) = 79.

Vậy x12+x22x1x2=79.

Thực hành 3 trang 19 Toán 9 Tập 2: Tính nhẩm nghiệm của các phương trình:

a) –315x2 – 27x + 342 = 0;

b) 2 022x2 + 2 023x + 1 = 0.

Lời giải:

a) Phương trình –315x2 – 27x + 342 = 0 có a + b + c = –315 – 27 + 342 = 0.

Vậy phương trình có hai nghiệm là x1=1;  x2=ca=342315=3835.

b) Phương trình 2 022x2 + 2 023x + 1 = 0 có a – b + c = 2 022 – 2 023 + 1 = 0.

Vậy phương trình có hai nghiệm là x1=1;  x2=ca=12  022

Lời giải bài tập Toán 9 Bài 3: Định lí Viète hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác: