X

Toán 9 Kết nối tri thức

Cho hình chữ nhật có chiều dài và chiều rộng lần lượt là 3 và  căn bậc hai 3


Câu hỏi:

Cho hình chữ nhật có chiều dài và chiều rộng lần lượt là 3 và 3. Tính góc giữa đường chéo và cạnh ngắn hơn của hình chữ nhật (sử dụng bảng giá trị lượng giác trang 69).

Trả lời:

Gọi hình chữ nhật trong bài là hình chữ nhật ABCD với chiều rộng là cạnh AD=3, chiều dài là cạnh CD = 3, đường chéo AC, góc tạo bởi đường chéo và cạnh ngắn hơn của hình chữ nhật là góc α.

Xét ∆ABC vuông tại D, theo định nghĩa tỉ số lượng giác tan, ta có:

tanα=CDAD=33=3, suy ra α = 60°.

Vậy góc giữa đường chéo và cạnh ngắn hơn của hình chữ nhật đã cho là 60°.

Xem thêm lời giải bài tập Toán 9 Kết nối tri thức hay, chi tiết:

Câu 1:

Ta có thể xác định “góc dốc” α của một đoạn đường dốc khi biết độ dài của dốc là a và độ cao của đỉnh dốc so với đường nằm ngang là h không? (H.4.1). (Trong các tòa chung cư, người ta thường thiết kế đoạn dốc cho người đi xe lăn với góc dốc bé hơn 6°).

Ta có thể xác định “góc dốc” α của một đoạn đường dốc khi biết độ dài của (ảnh 1)

Xem lời giải »


Câu 2:

Xét góc C của tam giác ABC vuông tại A (H.4.3). Hãy chỉ ra cạnh đối và cạnh kề của góc C.

Xét góc C của tam giác ABC vuông tại A (H.4.3). Hãy chỉ ra cạnh đối và cạnh kề của góc C. (ảnh 1)

Xem lời giải »


Câu 3:

Cho tam giác ABC vuông tại A và tam giác A’B’C’ vuông tại A’ có B^=B'^=α. Chứng minh rằng:

a) ∆ABC ∆A’B’C’;

Xem lời giải »


Câu 4:

b) ACBC=A'C'B'C';  ABBC=A'B'B'C';  ACAB=A'C'A'B';  ABAC=A'B'A'C'.

Xem lời giải »


Câu 5:

a) Viết các tỉ số lượng giác sau thành tỉ số lượng giác của các góc nhỏ hơn 45°: sin55°, cos62°, tan57°, cot64°.

Xem lời giải »


Câu 6:

b) Tính tan25°cot65°,  tan34°cot56°.

Xem lời giải »


Câu 7:

Dùng MTCT, tính (làm tròn đến chữ số thập phân thứ ba):

a) sin40°12’;

b) cos52°54’;

c) tan63°36’;

d) cot35°20’.

Xem lời giải »


Câu 8:

Dùng MTCT, tìm số đo của góc nhọn x (làm tròn đến phút), biết rằng:

a) sinx = 0,2368;

b) cosx = 0,6224;

c) tanx = 1,236;

d) cotx = 2,154.

Xem lời giải »