Cách giải phương trình chứa ẩn dưới dấu căn cực hay, chi tiết - Toán lớp 10


Cách giải phương trình chứa ẩn dưới dấu căn cực hay, chi tiết

Với Cách giải phương trình chứa ẩn dưới dấu căn cực hay, chi tiết Toán lớp 10 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập giải phương trình chứa ẩn dưới dấu căn từ đó đạt điểm cao trong bài thi môn Toán lớp 10.

Cách giải phương trình chứa ẩn dưới dấu căn cực hay, chi tiết

Lý thuyết & Phương pháp giải

Để giải phương trình chứa ẩn dưới dấu căn ta tìm cách để khử dấu căn, bằng cách:

– Nâng luỹ thừa hai vế.

– Phân tích thành tích.

– Đặt ẩn phụ.

Các dạng phương trình sau ta có thể giải bằng cách thực hiện phép biến đổi tương đương:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Phương trình có dạng a.f(x) + b.√(f(x) ) + c = 0 ta đặt √(f(x)) = t

Ngoài ra ta còn có phương pháp phân tích thành tích bằng cách nhân liên hợp

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Với A, B không đồng thời bằng không

Ví dụ minh họa

Bài 1: Giải phương trình sau √(2x-3) = x-3

Hướng dẫn:

Ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hay lắm đó

Bài 2: Giải phương trình sauToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

Phương trình tương đương với phương trình

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy phương trình có nghiệm là x = 0 và x = 1

Bài 3: Giải phương trình sau √(2x-1) + x2 - 3x + 1 = 0

Hướng dẫn:

Ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy phương trình có nghiệm là x = 1 và x = 2 - √2

Bài 4: Giải phương trình sau x2 + √(x2 + 11) = 31

Hướng dẫn:

Đặt t = √(x2 + 11), t ≥ 0. Khi đó phương trình đã cho trở thành:

t2 + t - 42 = 0 ⇔ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vì t ≥ 0 ⇒ t = 6, thay vào ta có √(x2 + 11) = 6

x2 + 11 = 36 ⇔ x = ±5

Vậy phương trình có nghiệm là x = ±5

Bài 5: Giải phương trình sauToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

Đặt t = √(3x2 - 2x + 2), điều kiện t ≥ 0. Khi đó √(3x2 - 2x + 9) = √(t2 + 7)

Phương trình trở thành √(t2 + 7) + t = 7

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy phương trình có hai nghiệm x = (1 ± √22)/3

Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có lời giải hay khác: