Lý thuyết Phép đối xứng tâm hay, chi tiết nhất - Toán lớp 11


Lý thuyết Phép đối xứng tâm hay, chi tiết nhất

Tài liệu Lý thuyết Phép đối xứng tâm hay, chi tiết nhất Toán lớp 11 sẽ tóm tắt kiến thức trọng tâm về Phép đối xứng tâm từ đó giúp học sinh ôn tập để nắm vứng kiến thức môn Toán lớp 11.

Lý thuyết Phép đối xứng tâm hay, chi tiết nhất

1. Định nghĩa

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

    Cho điểm I. Phép biến hình biến điểm I thành chính nó, biến mỗi điểm M khác I thành M’ sao cho I là trung điểm của MM’ được gọi là phép đối xứng tâm I.

    Điểm I được gọi là tâm đối xứng.

    Phép đối xứng tâm I thường được kí hiệu là ĐI.

    Nếu hình H là ảnh của hình H qua ĐI thì ta còn nói H đối xứng với H’ qua tâm I, hay H và H’ đối xứng với nhau qua I.

    Từ đinh nghĩa suy ra M = ĐI(M) ⇔ IM' = - IM

2. Biểu thức toạ độ

    Với O(0;0), ta có M(x’; y’) = ĐO[M(x;y)] thì

        Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

    Với I(a; b), ta có M(x’; y’) = ĐI(x’; y’) thì

        Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hay lắm đó

3. Tính chất

Tính chất 1

    Nếu ĐI(M) = M’ và ĐI(N) = N thì M'N' = – MN, từ đó suy ra M’N’ = MN.

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Tính chất 2

    Phép đối xứng tâm biến đường thẳng thành đường thẳng song song hoặc trùng với nó, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn cùng bán kính.

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

4. Tâm đối xứng của một hình

Định nghĩa

    Điểm I được gọi là tâm đối xứng của hình H nếu phép đối xứng tâm I biến hình H thành chính nó.

    Khi đó ta nói H là hình có tâm đối xứng.

Xem thêm các dạng bài tập Toán lớp 11 chọn lọc, có lời giải hay khác: