Cách giải Phương trình bậc hai với một hàm số lượng giác cực hay - Toán lớp 11


Cách giải Phương trình bậc hai với một hàm số lượng giác cực hay

Với Cách giải Phương trình bậc hai với một hàm số lượng giác cực hay Toán lớp 11 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Phương trình bậc hai với một hàm số lượng giác từ đó đạt điểm cao trong bài thi môn Toán lớp 11.

Cách giải Phương trình bậc hai với một hàm số lượng giác cực hay

A. Phương pháp giải & Ví dụ

Định nghĩa:

Phương trình bậc hai đối với một hàm số lượng giác Là phương trình có dạng :

        a.f2(x) + b.f(x) + c = 0

với f(x) = sinu(x) hoặc f(x) = cosu(x), tanu(x), cotu(x).

Cách giải:

Đặt t = f(x) ta có phương trình : at2 + bt +c = 0

Giải phương trình này ta tìm được t, từ đó tìm được x

Khi đặt t = sinu(x) hoặc t = cosu(x), ta có điều kiện: -1 ≤ t ≤ 1

Ví dụ minh họa

Bài 1: sin2x +2sinx - 3 = 0

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 2: cos2x – sinx + 2 = 0

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hay lắm đó

B. Bài tập vận dụng

Bài 1: 1/(sin2 x)+tanx-1=0

Lời giải:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 2: cosx – sin2x = 0

Lời giải:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 3: cos2x + cosx – 2 = 0

Lời giải:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 4: 1 + sin2x + cosx + sinx = 0

Lời giải:

⇔ 1 + 2 sin⁡x cos⁡x + 2(cos⁡x+sin⁡x ) = 0

⇔ cos2⁡x + sin2⁡x + 2 sin⁡xcos⁡x + 2 (cos⁡x+sin⁡x )=0

⇔ (sin⁡x + cos⁡x)2 + 2 (cos⁡x+sin⁡x )=0

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 5: cos23xcos2x – cos2x = 0

Lời giải:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Xem thêm các dạng bài tập Toán lớp 11 chọn lọc, có lời giải hay khác: