Cho tam giác ABC cân tại A. Trên AB và AC lần lượt lấy hai điểm E và F
Cho tam giác ABC cân tại A. Trên AB và AC lần lượt lấy hai điểm E và F sao cho AE = AF. Hai đoạn thẳng BF và CE cắt nhau tại O, chứng minh AO là đường trung trực của BC.
Giải vở thực hành Toán 7 Bài 10: Bài tập cuối chương 8
Bài 4 trang 65 Vở thực hành Toán 7 Tập 2: Cho tam giác ABC cân tại A. Trên AB và AC lần lượt lấy hai điểm E và F sao cho AE = AF. Hai đoạn thẳng BF và CE cắt nhau tại O, chứng minh AO là đường trung trực của BC.
Lời giải:
Kéo dài AO cắt BC tại M.
Xét tam giác ACE và tam giác ABF.
AC = AB ( do tam giác ABC cân tại A)
AE = AF (gt)
Góc A chung
Vậy tam giác ACE bằng tam giác ABF theo trường hợp c.g.c. Suy ra CE = BF.
Xét tam giác ECB và tam giác FBC
( do tam giác ABC cân tại A)
CE = BF
Cạnh chung BC
Vậy tam giác ECB bằng tam giác FBC theo trường hơpk c.g.c. Suy ra hay nên tam giác OBC cân tại O. Ta có OB = OC hay O nằm trên đường trung trực của BC (1).
AB = AC ( do tam giác ABC cân tại A) nên A nằm trên đường trung trực của BC. (2)
Từ (1) và (2) suy ra AO là đường trung trực của BC.