Cho tam giác ABC cân tại A, hai trung tuyến BM và CN cắt nhau tại G


Cho tam giác ABC cân tại A, hai trung tuyến BM và CN cắt nhau tại G.

Giải vở thực hành Toán 7 Bài 7: Tính chất ba đường trung tuyến của tam giác

Bài 5 trang 55 Vở thực hành Toán 7 Tập 2: Cho tam giác ABC cân tại A, hai trung tuyến BM và CN cắt nhau tại G.

a) Chứng minh BM = CN.

b) Biết BM = 9 cm. Tính CG.

Lời giải:

Cho tam giác ABC cân tại A, hai trung tuyến BM và CN cắt nhau tại G

a) Tam giác ABC cân tại A nên AB = AC và ABC^=ACB^.

BM là trung tuyến nên M là trung điểm AC. Ta có MA = MC = 12AC.

CN là trung tuyến nên N là trung điểm AB. Ta có NA = NB = 12AB.

Suy ra MA = MC = NA = NB.

Xét tam giác CNB và tam giác BMC.

NB = MC.

NBC^=MCB^.

Cạnh chung BC.

Vậy tam giác CNB bằng tam giác BMC theo trường hợp c.g.c. Suy ra BM = CN.

b) Do BM = CN nên BM = 9 cm thì CN = 9 cm.

Theo định lí về ba đường trung tuyến của tam giác, CG = <![if !vml]><![endif]>CN.

Suy ra CG = 23.9 = 6 cm.

Xem thêm các bài giải Vở thực hành Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác: