Cho tam giác ABC có hai trung tuyến BM và CN cắt nhau tại G
Cho tam giác ABC có hai trung tuyến BM và CN cắt nhau tại G. Biết BM = CN, chứng minh tam giác GBC và tam giác GMN cùng cân tại G.
Giải vở thực hành Toán 7 Bài 7: Tính chất ba đường trung tuyến của tam giác
Bài 8 trang 56 Vở thực hành Toán 7 Tập 2: Cho tam giác ABC có hai trung tuyến BM và CN cắt nhau tại G. Biết BM = CN, chứng minh tam giác GBC và tam giác GMN cùng cân tại G.
Lời giải:
Theo định lí về ba đường trung tuyến trong tam giác ta có:
GC = CN.
GB = BM.
Mà BM = CN (gt) nên GB = GC. Suy ra tam giác GBC cân tại G.
GN = CN – GC = BM – GB = GM. Suy ra tam giác GMN cân tại G.