Bài 6 trang 59 Chuyên đề Toán 10
Giải Chuyên đề Toán 10 Bài 3: Parabol
Haylamdo biên soạn và sưu tầm lời giải Bài 6 trang 59 Chuyên đề Toán 10 trong Bài 3: Parabol. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.
Bài 6 trang 59 Chuyên đề Toán 10: Một sao chổi A chuyển động theo quỹ đạo có dạng một parabol (P) nhận tâm Mặt Trời là tiêu điểm. Cho biết khoảng cách ngắn nhất giữa sao chổi A và tâm Mặt Trời là khoảng 112 km.
a) Viết phương trình chính tắc của parabol (P).
b) Tính khoảng cách giữa sao chổi A và tâm Mặt Trời khi sao chổi nằm trên đường thẳng đi qua tiêu điểm và vuông góc với trục đối xứng của (P).
Lời giải:
a) Chọn hệ trục toạ độ sao cho gốc toạ độ O trùng với đỉnh của parabol, tâm Mặt Trời trùng với tiêu điểm của parabol, đơn vị trên các trục là kilômét.
Gọi phương trình chính tắc của (P) là y2 = 2px (p > 0).
Gọi F là tiêu điêm của (P), (x; y) là toạ độ của sao chổi A.
Khi đó khoảng cách giữa sao chổi A và tâm Mặt Trời là AF = ≥ (vì x ≥ 0)
khoảng cách ngắn nhất giữa sao chổi A và tâm Mặt Trời là (km)
Vậy phương trình chính tắc của (P) là y2 = 448x.
b) Khi sao chổi nằm trên đường thẳng đi qua tiêu điểm và vuông góc với trục đối xứng của (P) thì sao chổi có hoành độ là
Khoảng cách giữa sao chổi A và tâm Mặt Trời khi đó là:
AF = (km).