Bài 6 trang 59 Chuyên đề Toán 10
Giải Chuyên đề Toán 10 Bài 3: Parabol
Haylamdo biên soạn và sưu tầm lời giải Bài 6 trang 59 Chuyên đề Toán 10 trong Bài 3: Parabol. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.
Bài 6 trang 59 Chuyên đề Toán 10: Một sao chổi A chuyển động theo quỹ đạo có dạng một parabol (P) nhận tâm Mặt Trời là tiêu điểm. Cho biết khoảng cách ngắn nhất giữa sao chổi A và tâm Mặt Trời là khoảng 112 km.
a) Viết phương trình chính tắc của parabol (P).
b) Tính khoảng cách giữa sao chổi A và tâm Mặt Trời khi sao chổi nằm trên đường thẳng đi qua tiêu điểm và vuông góc với trục đối xứng của (P).
Lời giải:
a) Chọn hệ trục toạ độ sao cho gốc toạ độ O trùng với đỉnh của parabol, tâm Mặt Trời trùng với tiêu điểm của parabol, đơn vị trên các trục là kilômét.
Gọi phương trình chính tắc của (P) là y2 = 2px (p > 0).
Gọi F là tiêu điêm của (P), (x; y) là toạ độ của sao chổi A.
Khi đó khoảng cách giữa sao chổi A và tâm Mặt Trời là AF = x+p2 ≥ p2 (vì x ≥ 0)
⇒ khoảng cách ngắn nhất giữa sao chổi A và tâm Mặt Trời là p2 (km)
⇒p2=112⇒p=224.
Vậy phương trình chính tắc của (P) là y2 = 448x.
b) Khi sao chổi nằm trên đường thẳng đi qua tiêu điểm và vuông góc với trục đối xứng của (P) thì sao chổi có hoành độ là x=p2.
Khoảng cách giữa sao chổi A và tâm Mặt Trời khi đó là:
AF = x+p2=p2+p2=p=224 (km).