Bài 3 trang 14 Chuyên đề Toán 11 Chân trời sáng tạo
Cho phép tịnh tiến trong đó .
Giải Chuyên đề Toán 11 Bài 2: Phép tịnh tiến - Chân trời sáng tạo
Bài 3 trang 14 Chuyên đề Toán 11: Cho phép tịnh tiến trong đó .
a) Tìm ảnh của các điểm A(–3; 4), B(2; –7) qua .
b) Biết rằng M’(2; 6) là ảnh của điểm M qua . Tìm tọa độ của điểm M.
c) Tìm ảnh của đường thẳng d: 4x – 3y + 7 = 0 qua .
Lời giải:
a) Đặt .
Suy ra , mà
Do đó
Vì vậy
Suy ra tọa độ A’(0; 9).
Đặt .
Suy ra , mà
Do đó
Vì vậy
Suy ra tọa độ B’(5; –2).
Vậy ảnh của các điểm A, B qua lần lượt là các điểm A’(0; 9), B’(5; –2).
b) Gọi M(xM; yM).
Theo đề, ta có .
Suy ra , mà
Do đó
Vì vậy
Vậy tọa độ M(–1; 1) thỏa mãn yêu cầu bài toán.
c) Chọn điểm N(–1; 1) ∈ d: 4x – 3y + 7 = 0.
Gọi N’(x’; y’) lần lượt là ảnh của N qua .
Ta có , suy ra với
Do đó
Vì vậy
Suy ra tọa độ N’(2; 6).
Đường thẳng d: 4x – 3y + 7 = 0 có vectơ pháp tuyến .
Gọi d’ là ảnh của d qua , do đó d’ song song hoặc trùng với d nên d’ nhận làm vectơ pháp tuyến.
Ta có d’ là đường thẳng đi qua M’(2; 6) và có vectơ pháp tuyến nên có phương trình là:
4(x – 2) – 3(y – 6) = 0 hay 4x – 3y + 10 = 0.
Vậy ảnh của đường thẳng d: 4x – 3y + 7 = 0 qua là đường thẳng d’: 4x – 3y + 10 = 0.
Lời giải Chuyên đề Toán 11 Bài 2: Phép tịnh tiến hay, chi tiết khác: