Chứng tỏ rằng các đa giác đều có cùng số cạnh thì đồng dạng với nhau
Bài 7: Phép đồng dạng
Bài 32 (trang 31 sgk Hình học 11 nâng cao): Chứng tỏ rằng các đa giác đều có cùng số cạnh thì đồng dạng với nhau
Lời giải:
Giả sử cho hai n-giác đều A1A2...An và B1B2…Bn có tâm lần lượt là O và O'. Đặt :
Gọi V là phép vị tự tâm O , tỉ số k và C1C2…Cn là ảnh của đa giác A1A2…An qua phép vị tự V . Hiển nhiên C1C2…Cn cũng là đa giác đều vì :
Nên C1C2 = B1B2. Vậy hai n-giác đều C1C2….Cn và B1B1…Bn có cạnh bằng nhau, tức là có phép dời hình D biến C1C2…Cn thành B1B2…Bn (xem BT22, chương I, SGK). Nếu gọi F là phép hợp thành của V và D thì F là phép đồng đạng biến A1A2…An thành B1B2…Bn.Vậy hai đa giác đều đó đồng dạng với nhau