Lập phương trình đường thẳng ∆ là tiếp tuyến của đường tròn (C) (x+2)^2+(y-3)^2=4


Lập phương trình đường thẳng ∆ là tiếp tuyến của đường tròn (C): (x+2)+(y-3)=4 trong mỗi trường hợp sau:

Giải sách bài tập Toán 10 Bài 5: Phương trình đường tròn

Bài 55 trang 89 SBT Toán 10 Tập 2: Lập phương trình đường thẳng ∆ là tiếp tuyến của đường tròn (C): (x+2)2+(y-3)2=4 trong mỗi trường hợp sau:

a) ∆ tiếp xúc (C) tại điểm có tung độ bằng 3.

b) ∆ vuông góc với đường thẳng 5x – 12y + 1 = 0.

c) ∆ đi qua điểm D(0; 4).

Lời giải:

Đường tròn có tâm I(-2; 3) và bán kính R = 2.

a) Hoành độ của điểm có tung độ bằng 3 là:

(x+2)2+(3-3)2=4 Lập phương trình đường thẳng ∆ là tiếp tuyến của đường tròn (C) (x+2)^2+(y-3)^2=4

Suy ra ta có 2 điểm M(0; 3) và điểm N(-4; 3).

Vectơ pháp tuyến của đường thẳng IM là: IM=(2;0).

Phương trình đường thẳng IM: 2(x – 0) = 0 hay x = 0.

Vectơ pháp tuyến của đường thẳng IN là: IN=(-2;0).

Phương trình đường thẳng IN: - 2(x + 4) = 0 hay x + 4 = 0.

Vậy phương trình đường thẳng là: x = 0 hoặc x + 4 = 0.

b) ∆ vuông góc với đường thẳng 5x – 12y + 1 = 0

nên ∆ có dạng: 12x + 5y + c = 0.

Khoảng cách từ I đến ∆ bằng R nên d(I,∆)=2

Lập phương trình đường thẳng ∆ là tiếp tuyến của đường tròn (C) (x+2)^2+(y-3)^2=4

Với c = 35 thì phương trình tiếp tuyến là: 12x + 5y + 35 =0

Với c = - 17 thì phương trình tiếp tuyến là: 12x + 5y – 17 =0

c) Gọi H(a ;b) là tiếp điểm.

Do D(0; 4) thuộc nên DH vuông góc với IH và IH = R = 2.

Ta có: DH=(a;b-4) và IH=(a+2;b-3)

⇒ IH = |IH|=a+22+b32=2

⇔ a2 + 4a + 4 + b2 – 6b + 9 = 4

⇔ a2 + 4a + b2 – 6b + 9 = 0 (1)

Ta lại có: DH.IH=0 a(a+2)+(b-4)(b-3)=0

⇔ a2 + 2a + b2 – 7b + 12 = 0 (2)

Từ (1) và (2) ta có hệ phương trình:

Lập phương trình đường thẳng ∆ là tiếp tuyến của đường tròn (C) (x+2)^2+(y-3)^2=4

Lập phương trình đường thẳng ∆ là tiếp tuyến của đường tròn (C) (x+2)^2+(y-3)^2=4

Với a = 0, b = 3 thì H(0; 3)

Suy ra IH=(2;0)

Do đó phương trình tiếp tuyến cần tìm là: 2(x – 0) = 0 ⇔ x = 0.

Với a=-45; b=235

Suy ra IH= 65;85=253;4

Do đó phương trình tiếp tuyến cần tìm là: 3(x – 0) + 4(y – 4) = 0 ⇔ 3x + 4y – 16 = 0.

Vậy có hai đường thẳng ∆ thỏa mãn yêu cầu là x = 0 hoặc 3x + 4y – 16 = 0.

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: