Trong mặt phẳng tọa độ Oxy, cho điểm M(1; 1) và đường thẳng ∆ 3x + 4y + 3 = 0


Trong mặt phẳng tọa độ Oxy, cho điểm M(1; 1) và đường thẳng ∆: 3x + 4y + 3 = 0. Viết phương trình đường tròn (C), biết (C) có tâm M và đường thẳng ∆ cắt (C) tại hai điểm N, P thỏa mãn tam giác MNP đều.

Giải sách bài tập Toán 10 Bài 5: Phương trình đường tròn

Bài 58 trang 90 SBT Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho điểm M(1; 1) và đường thẳng ∆: 3x + 4y + 3 = 0. Viết phương trình đường tròn (C), biết (C) có tâm M và đường thẳng ∆ cắt (C) tại hai điểm N, P thỏa mãn tam giác MNP đều.

Lời giải:

Gọi H là hình chiếu của M lên ∆

Suy ra MH là khoảng cách từ M đến ∆

MH = Trong mặt phẳng tọa độ Oxy, cho điểm M(1; 1) và đường thẳng ∆ 3x + 4y + 3 = 0=2

Xét tam giác MNH vuông tại H có:

MN = MHsin60o=43

Mà R = MN = 43

Phương trình đường tròn là: (x-1)2 +(y-1)2 =163.

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: