Cho tam giác ABC có AB = 5, AC = 7, BC = 9. Tính số đo góc A và bán kính R của đường tròn ngoại tiếp tam giác


Cho tam giác ABC có AB = 5, AC = 7, BC = 9. Tính số đo góc A và bán kính R của đường tròn ngoại tiếp tam giác (làm tròn kết quả đến hàng phần mười).

Giải sách bài tập Toán 10 Bài 1: Định lí côsin và định lí sin trong tam giác. Giá trị lượng giác của một góc từ 0° đến 180°

Bài 7 trang 75 SBT Toán 10 Tập 1: Cho tam giác ABC có AB = 5, AC = 7, BC = 9. Tính số đo góc A và bán kính R của đường tròn ngoại tiếp tam giác (làm tròn kết quả đến hàng phần mười).

Lời giải:

Xét tam giác ABC, ta có:

Áp dụng hệ quả của định lí cos, ta được:

cosA=AB2+AC2-BC22.AB.AC=52+72-922.5.7=-110

A^= 95,7°.

Ta có p = 5+7+92 = 10,5

Áp dụng công thức herong, diện tích tam giác ABC là:

S = p(p-a)(p-b)(p-c)=10,5(10,5-9)(10,5-7)(10,5-5)17,4.

Mặt khác, ta lại có: S=abc4R

⇒ R = abc4S= 9.7.54.17,44,5.

Vậy A^ = 95,7° và R ≈ 4,5.

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: