Cho tam giác ABC có góc A = 99 độ, b = 6, c = 10 SBT Toán 10 Tập 1


Haylamdo biên soạn và sưu tầm lời giải Bài 4 trang 81 SBT Toán 10 Tập 1 trong Bài tập cuối chương 4. Với lời giải chi tiết nhất hy vọng sẽ giúp các bạn dễ dàng nắm được cách làm bài tập Sách bài tập Toán 10.

Giải sách bài tập Toán 10 Bài tập cuối chương 4

Bài 4 trang 81 SBT Toán 10 Tập 1: Cho tam giác ABC có A^ = 99°, b = 6, c = 10. Tính:

a) Diện tích tam giác ABC;

b) Bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam giác ABC.

Lời giải:

a) Diện tích tam giác ABC là:

S = 12.b.c.sinA^= 12.6.10.sin99° ≈ 29,63 (đvdt).

Vậy diện tích tam giác ABC là 29,63 đvdt.

b) Áp dụng định lí côsin ta có:

a2 = b2 + c2 – 2bccosA

a2 = 62 + 102 – 2.6.10.cos99°

a = 62+1022.6.10.cos99°

a ≈ 12,44.

Áp dụng định lí sin ta có: asinA=2R

R = a2sinA = 12,442.sin99° ≈ 6,30.

Nửa chu vi tam giác ABC là:

p = a+b+c2=12,44+6+102 = 14,22.

Lại có: r = Sp = 29,6314,22 ≈ 2,08.

Vậy bán kính đường tròn ngoại tiếp tam giác ABC là 6,30 và bán kính đường tròn nội tiếp tam giác ABC là 2,08.

Xem thêm lời giải Sách bài tập Toán 10 Chân trời sáng tạo hay, chi tiết khác: